22 resultados para Bernard Lahire
Resumo:
Nuclear receptors are a superfamily of metazoan transcription factors that have been shown to be involved in a wide range of developmental and physiological processes. A PCR-based survey of genomic DNA and developmental cDNAs from the ascidian Herdmania identifies eight members of this multigene family. Sequence comparisons and phylogenetic analyses reveal that these ascidian nuclear receptors are representative of five of the six previously defined nuclear receptor subfamilies and are apparent homologues of retinoic acid [NR1B], retinoid X [NR2B], peroxisome proliferator-activated [NR1C], estrogen related [NR3B], neuron-derived orphan (NOR) [NR4A3], nuclear orphan [NR4A], TR2 orphan [NR2C1] and COUP orphan [NR2F3] receptors. Phylogenetic analyses that include the ascidian genes produce topologically distinct trees that suggest a redefinition of some nuclear receptor subfamilies. These trees also suggest that extensive gene duplication occurred after the vertebrates split from invertebrate chordates. These ascidian nuclear receptor genes are expressed differentially during embryogenesis and metamorphosis.
Resumo:
The four-link chain of the motor unit represents the contemporary end-point of some two millennia of evolving knowledge in neuroscience. The paradigm shift in neuromuscular epistemology occurred in the mid-17th century. In 1666, the newly graduated Dutch doctor, Jan Swammerdam (1637-1680) published his former investigations of dissected nerve-muscle preparations. These experiments comprised the quantum leap from observation and speculation, to that of experimentation in the field of neuroanatomy and neurophysiology. In what he termed 'A Curious Experiment' he also described the phenomenon of intrinsic muscle excitability - I cannot observe that the muscle in the living animal ever absolutely ceases from all motion. Eighty years later (1752), von Haller demonstrated experimentally that irritability (contractility) was an intrinsic property of all muscular tissue; and distinguished between the sensibility of nerve impulses and the irritability of muscular contraction. This experimental progression from Swammerdam to von Haller culminated in 1850, when Claude Bernard's studies in experimental pharmacology confirmed that muscle was a functional unit, independent of any electrical innervation via its supplying nerve. This account comprises an audit of Swammerdam's work in the perspective of neuromuscular knowledge. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Figures on the relative frequency of synthetic and composite future forms in Ouest-France are presented and compared with those of earlier studies on the passé simple and passé composé. The synthetic future is found to be dominant. Possible formal explanations for distribution are found to be inconclusive. Distribution across different text-types is found to be more promising, since contrastive functions of the two forms can be identified in texts where they co-occur. The composite future typically reports new proposals or plans as current news, while the synthetic future outlines details that will be realised at the time of implementation. Both functions are important in dailies, but current news is more often expressed in the present tense at the expense of the composite future.
Resumo:
We describe for the first time the application of fast neutron mutagenesis to the genetic dissection of root nodulation in legumes. We demonstrate the utility of chromosomal deletion mutations through production of a soybean supernodulation mutant FN37 that lacks the internal autoregulation of nodulation mechanism. After inoculation with microsymbiont Bradyrhizobium japonicum, FN37 forms at least 10 times more nodules than the wild type G. soja parent and has a phenotype identical to that of chemically induced allelic mutants nts382 and nts1007 (NTS-1 locus). Reciprocal grafting of shoots and roots confirmed systemic shoot control of the FN37 nodulation phenotype. RFLP/PCR marker pUTG132a and AFLP marker UQC-IS1 which are tightly linked to NTS-1 allowed the isolation of BAC contigs delineating both ends of the deletion. The genetic/physical distance ratio in the NTS-1 region is 279 kb/cM. The deletion is estimated to be about 460 kb based on the absence of markers and bacterial artificial chromosomes (BAC) ends as well as genetic and physical mapping. Deletion break points were determined physically and placed within flanking BAC contigs.
Resumo:
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced, the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage- and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Resumo:
Most animals have sensory systems that allow them to balance and orient relative to the pull of gravity. Structures responsible for these functions range from very simple statocysts found in many aquatic invertebrates to the complex inner ear of mammals. Previous studies suggest that the specialized mechanosensory structures responsible for balance in vertebrates and insects may be homologous based on the requirement and expression of group II Pax genes (i.e., Pax-2/5/8 genes). Here we report the expression of a Pax-258 gene in the statocysts and other chemosensory and mechanosensory cells during the development of the gastropod mollusk Haliotis asinina, a member of the Lophotrochozoa. Based on the phylogenetic distribution of geo-sensory systems and the consistent expression of Pax-258 in the cells that form these systems, we propose that Pax-258, along with POU-III and -IV genes, has an ancient and conserved role in the formation of structures responsible for balance and geotaxis in eumetazoans.