38 resultados para BRCA1 MICRODELETION
Resumo:
Inactivation of p16(INK4a) and/or activation of cyclin-dependent kinase-4 (CDK4) are strongly associated with both susceptibility and progression in melanoma. Activating CDK4 mutations prevent the binding and inhibition of CDK4 by p16(INK4a). A second, more indirect role for CDK4 is in late G(1), where It may sequester the inhibitors p27(KIP1) or p21(CIP1) away from CDK2, and in doing so upregulate the CDK2 activity necessary for cells to proceed completely through G(1) into S phase. As the pivotal residues around the most predominant R24C activating CDK4 mutation are invariant between CDK2 and CDK4, we speculated that the pivotal arginine (position 22 in CDK2), or a nearby residue, may be mutated in some melanomas, resulting in the diminution of its binding and inhibition by p27(KIP1) or p21(CIP1). However, except for a silent polymorphism, we detected no variants within this region of the CDK2 gene in 60 melanoma cell lines. Thus, if CDK2 activity is dysregulated in melanoma it is likely to occur by a means other than mutations causing loss of direct inhibition. We also examined the expression of the CDK2 gene in melanoma cell lines, to assess its possible co-regulation with the gene for the melanocyte-lineage antigen pmel17, which maps less than 1 kb away in head to head orientation with CDK2 and may be transcribed off the same bidirectional promoter. However, expression of the genes is not co-regulated. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Resumo:
The BRCA2 N372H nonconservative amino acid substitution polymorphism appears to affect fetal survival in a sex-dependent manner, and the HH genotype was found to be associated with a 1.3-fold risk of breast cancer from pooling five case-control studies of Northern European women. We investigated whether the BR 2 N372H polymorphism was associated with breast cancer in Australian women using a population-based case-control design. The BRCA2 372 genotype was determined in 1397 cases under the age of 60 years at diagnosis of a first primary breast cancer and in 775 population-sampled controls frequency matched for age. Case-control analyses and comparisons of genotype distributions were conducted using logistic regression. All of the statistical tests were two-tailed. The HH genotype was independent of age and family history of breast cancer within cases and controls, and was more common in cases (9.2% versus 6.5%). It was associated with an increased risk of breast cancer, 1.47-fold unadjusted (95% confidence interval, 1.05-2.07; P = 0.02), and 1.42-fold (95% confidence interval, 1.00-2.02; P = 0.05) after adjusting for measured risk factors. This effect was still evident after excluding women with any non-Caucasian ancestry or the 33 cases known to have inherited a mutation in BRCA1 or BRCA2, and would explain similar to3% of breast cancer. The BRCA2 N372H polymorphism appears to be associated with a modest recessively inherited risk of breast cancer in Australian women. This result is consistent with the findings for Northern European women.