635 resultados para Australian Bat Lyssavirus Japanese Encephalitis-virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Japanese encephalitis virus serocomplex is a group of mosquito-borne flaviviruses that cause severe encephalitic disease in humans. The recent emergence of several members of this serocomplex in geographic regions where other closely related flaviviruses are endemic has raised urgent human health issues. Thus, the impact of vaccination against one of these neurotropic virus on the outcome of infection with a second, serologically related virus is unknown. We show here that immunity against Murray Valley encephalitis virus in vaccinated mice can cross-protect but also augment disease severity following challenge with Japanese encephalitis virus. Immunepotentiation of heterologous flavivirus disease was apparent in animals immunized with a 'killed' virus preparation when humoral antiviral immunty of low magnitude was elicited. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Backtrack simulation analysis indicates that wind-blown mosquitoes could have traveled from New Guinea to Australia, potentially introducing Japanese encephalitis virus. Large incursions of the virus in 1995 and 1998 were linked with low-pressure systems that sustained strong northerly winds from New Guinea to the Cape York Peninsula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancement of flavivirus infection in vitro in the presence of subneutralizing concentrations of homologous or heterologous antiserum has been well described. However, the importance of this phenomenon in the enhancement of flavivirus infection in vivo has not been established. In order to study antibody- mediated enhancement of flavivirus infection in vivo, we investigated the effect of passive immunization of mice with Japanese encephalitis virus (JE) antiserum on the outcome of infection with Murray Valley encephalitis virus (MVE). We show that prior treatment of mice with subneutralizing concentrations of heterologous JE antiserum resulted in an increase in viraemia titres and in mortality following challenge with wild-type MVE. Our findings support the hypothesis that subneutralizing concentrations of antibody may enhance flavivirus infection and virulence in vivo. These findings are of potential importance for the design of JE vaccination programs in geographic areas in which MVE co-circulates. Should subneutralizing concentrations of antibody remain in the population following JE vaccination, it is possible that enhanced disease may be observed during MVE epidemics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural isolates and laboratory strains of West Nile virus (WNV) and Japanese encephalitis virus (JEV) were attenuated for neuroinvasiveness in mouse models for flavivirus encephalitis by serial passage in human adenocarcinoma (SW13) cells. The passage variants displayed a small-plaque phenotype, augmented affinity for heparin-Sepharose, and a marked increase in specific infectivity for SW13 cells relative to the respective parental viruses, while the specific infectivity for Vero cells was not altered. Therefore, host cell adaptation of passage variants was most likely a consequence of altered receptor usage for virus attachment-entry with the involvement of cell surface glycosaminoglycans (GAG) in this process. In vivo blood clearance kinetics of the passage variants was markedly faster and viremia was reduced relative to the parental viruses, suggesting that affinity for GAG (ubiquitously present on cell surfaces and extracellular matrices) is a key determinant for the neuroinvasiveness of encephalitic flaviviruses. A difference in pathogenesis between WNV and JEV, which was reflected in more efficient growth in the spleen and liver of the WNV parent and passage variants, accounted for a less pronounced loss of neuroinvasiveness of GAG binding variants of WNV than JEV. Single gain-of-net-positive-charge amino acid changes at E protein residue 49, 138, 306, or 389/390, putatively positioned in two clusters on the virion surface, define molecular determinants for GAG binding and concomitant virulence attenuation that are shared by the JEV serotype flaviviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To develop and validate specific, sensitive and rapid diagnostic tests using RT-PCR for the detection of Ross River virus (RRV), Kunjin virus (KV) and Murray Valley encephalitis virus (MVEV) infections in horses. Methods Primer sets based on nucleotide sequence encoding the envelope glycoprotein E2 of RRV and on the nonstructural protein 5 (NS5) of KV and MVEV were designed and used in single round PCRs to test for the respective viruses in infected cell cultures and, in the case of RRV, in samples of horse blood and synovial fluid. Results The primer pairs designed for each of the three viruses amplified a product of expected size from prototype viruses that were grown in cell culture. The identity of each of the products was confirmed by nucleotide sequencing indicating that in the context used the RT-PCRs were specific. RRV was detected in serums from 8 horses for which there were clinical signs consistent with RRV infection such that an acute-phase serum sample was taken and submitted for RRV serology testing. The RRV RT-PCR was analytically sensitive in that it was estimated to detect as little as 50 TCID50 of RRV per mL of serum and was specific in that the primer pairs did not amplify other products from the 8 serum samples. The RRV primers also detected virus in three independent mosquito pools known to contain RRV by virus isolation in cell culture. Samples from horses suspected to be infected with KV and MVEV were not available. Conclusion Despite much anecdotal and serological evidence for infection of horses with RRV actual infection and associated clinical disease are infrequently confirmed. The availability of a specific and analytically sensitive RT-PCR for the detection of RRV provides additional opportunities to confirm the presence of this virus in clinical samples. The RTPCR primers for the diagnosis of KV and MVEV infections were shown to be specific for cell culture grown viruses but the further validation of these tests requires the availability of appropriate clinical samples from infected horses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incursions of Japanese encephalitis (JE) virus into northern Queensland are currently monitored using sentinel pigs. However, the maintenance of these pigs is expensive, and because pigs are the major amplifying hosts of the virus, they may contribute to JE transmission. Therefore, we evaluated a mosquito-based detection system to potentially replace the sentinel pigs. Single, inactivated JE-infected Culex annulirostris Skuse and C. sitiens Wiedemann were placed into pools of uninfected mosquitoes that were housed in a Mosquito Magnet Pro (MM) trap set under wet season field conditions in Cairns, Queensland for 0, 7, or 14 d. JE viral RNA was detected (cycling threshold [CT] = 40) in 11/ 12, 10/14, and 2/5 pools containing 200, 1,000, and 5,000 mosquitoes, respectively, using a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR). The ability to detect virus was not affected by the length of time pools were maintained under field conditions, although the CT score tended to increase with field exposure time. Furthermore, JE viral RNA was detected in three pools of 1,000 mosquitoes collected from Badu Island using a MM trap. These results indicated that a mosquito trap system employing self-powered traps, such as the MosquitoMagnet, and a real-time PCR system, could be used to monitor for JE in remote areas.