25 resultados para Ascospores and germination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reforestation in tropical areas is usually attempted by planting seedlings but, direct seeding (the artificial addition or sowing of seed) may be an alternative way of accelerating forest recovery and successional processes. This study investigated the effects of various sowing treatments (designed to create different microsite conditions for seed germination) and seed sizes on the early establishment and growth of directly sown rainforest tree species in a variety of experimental plots at three sites in the wet tropical region of north-cast Queensland, Australia. The different sowing treatments were found to have significant effects on seedling establishment. Broadcast sowing treatments were ineffective and resulted in very poor seedling establishment and high seed wastage. Higher establishment rates occurred when seeds were buried. Seed size was found to be an important factor affecting establishment in relation to micro-site condition. In general, larger seeded species had higher establishment rates at all three sites than species of small and intermediate seed size, but only in sowing treatments where seeds were buried. Overall these results suggest that direct sowing of seed can be used as a too] to accelerate recolonisation of certain rainforest tree species on degraded tropical lands, but initial success will be dependent on the choice of sowing method and its suitability for the seed types selected. The results also indicate that the recruitment of naturally dispersed tree species at degraded sites is likely to be severely limited by the availability of suitable microsites for seed germination. Consequently the natural recovery of degraded sites via seed rain can be expected to be slow and unpredictable, particularly in areas where soil compaction has occurred. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sporobolus pyramidalis P. Beauv (giant rats tail grass) is a serious agricultural and environmental weed in tropical and subtropical areas of Australia. Infestations of this unpalatable plant reduce the productivity of pastures and the profitability of industries dependent on grazing animals. This paper reports a series of studies undertaken to assist in the development of control strategies for this species. In particular, these studies measured the viability and dormancy status of fresh seed of S. pyramidalis and the decline of dormancy with time. Variability in these characteristics was determined in seeds collected from several sites within south-east Queensland. The effect of moisture availability during the inflorescence and seed production phases on seed viability and dormancy was also determined. The dormancy of freshly collected seed from several sites ranged from 15 to 95%, but decreased to negligible levels after 4-6 months. Seeds that matured under conditions of high moisture availability were initially more dormant than seeds matured where moisture was less readily available. The proportion of viable seeds was significantly lower in smaller than larger seeds even though viability for all seed sizes exceeded 90%. This study has shown that seed of S. pyramidalis generally has high viability with a large proportion of the seed germinable soon after maturity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genotypic diversity in Fusarium pseudograminearum and F. graminearum from Australia and the relationship between diversity and pathogen aggressiveness for head blight and/or crown rot of wheat were examined. Amplified fragment length polymorphism (AFLP) analysis revealed a high level of genotypic diversity within each species. Sixty-three of the 149 AFLP loci were significantly different between the two species and 70 of 72 F. pseudograminearum and 56 of 59 F. graminearum isolates had distinct haplotypes. When head blight and crown rot severity data from a recently published work on isolates representing the entire range of aggressiveness were used, only the genotypic diversity of F. pseudograminearum was significantly associated with its aggressiveness for the two diseases. Cluster analyses clearly demonstrated the polyphyletic structures that exist in both pathogen populations. The spatial diversity within F. graminearum was high within a single field, while frequent gene flow (N-m similar to 14) and a low fixation index (G(st) = 0.03) were recorded among F. pseudograminearum isolates from the adjacent states of New South Wales and Queensland. The differences in population structure between the heterothallic F. pseudograminearum (teleomorph G. coronicola) and the homothallic F. graminearum (teleomorph G. zeae) were not as pronounced as expected given their contrasting mating systems. Neither species was panmictic or strictly clonal. This points to sexual recombination in F. pseudograminearum, suggesting that ascospores of G. coronicola may also play a role in its biology and epidemiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sclerotinia species are sexually reproducing ascomycetes. In the past S. minor and S. sclerotiorum, have been assumed to be homothallic because of the self-fertility of colonies derived from single ascospores. S. trifoliorum has previously been shown to be bipolar heterothallic due to the presence of four self-fertile and four self-sterile ascospores within a single ascus [Uhm, J.Y., Fujii, H., 1983a. Ascospore dimorphism in Sclerotinia trifoliorum and cultural characters of strains from different-sized spores. Phytopathology 73: 565-569]. However, isolates of S. minor and S. sclerotiorum were proven to be homothallic ascomycetes, by self-fertility of all eight ascospores within an ascus. Apothecia were raised from all eight ascospores of a single tetrad from four isolates of S. minor and from an isolate of S. sclerotiorum, indicating that inbreeding may be the predominant breeding mechanism of S. minor. Ascospores from asci of S. minor and S. sclerotiorum were predominantly monomorphic, but rare examples of ascospore dimorphism similar to S. trifoliorum were found. (c) 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malva parviflora L. (Malvaceae) is rapidly becoming a serious weed of Australian farming systems. An understanding of the variability of its seed behaviour is required to enable the development of integrated weed management strategies. Mature M. parviflora seeds were collected from four diverse locations in the Mediterranean-type climatic agricultural region of Western Australia. All of the seeds exhibited physical dormancy at collection; manual scarification or a period of fluctuating summer temperatures (50/20 degrees C or natural) were required to release dormancy. When scarified and germinated soon (1 month) after collection, the majority of seeds were able to germinate over a wide range of temperatures (5-37 degrees C) and had no light requirement. Germination was slower for seeds stored for 2 months than seeds stored for 2 years, suggesting the presence of shallow physiological dormancy. Seed populations from regions with similar annual rainfall exhibited similar dormancy release patterns; seeds from areas of low rainfall (337-344mm) were more responsive to fluctuating temperatures, releasing physical dormancy earlier than those from areas of high rainfall (436-444mm). After 36 months, maximum seedling emergence from soil in the field was 60%, with buried seeds producing 13-34% greater emergence than seeds on the surface. Scanning electron microscopy of the seed coat revealed structural differences in the chalazal region of permeable and impermeable seeds, suggesting the importance of this region in physical dormancy breakdown of M. parviflora seeds. The influence of rainfall during plant growth in determining dormancy release, and hence, germination and emergence timing, must be considered when developing management strategies for M. parviflora.