18 resultados para Arizona Game and Fish Department
Resumo:
To understand how bees, birds, and fish may use colour vision for food selection and mate choice, we reconstructed views of biologically important objects taking into account the receptor spectral sensitivities. Reflectance spectra a of flowers, bird plumage, and fish skin were used to calculate receptor quantum catches. The quantum catches were then coded by red, green, and blue of a computer monitor; and powers, birds, and fish were visualized in animal colours. Calculations were performed for different illumination conditions. To simulate colour constancy, we used a von Kries algorithm, i.e., the receptor quantum catches were scaled so that the colour of illumination remained invariant. We show that on land this algorithm compensates reasonably well for changes of object appearance caused by natural changes of illumination, while in water failures of von Kries colour constancy are prominent. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Single cell genetic analysis is generally performed using PCR and FISH. Until recently, FISH has been the method of choice. FISH however is expensive, has significant misdiagnosis rates, can result in interpretation difficulties and is labour intensive making it unsuitable for high throughput processing. Recently fluorescent PCR reliability has increased to levels at or surpassing FISH whilst maintaining low cost. However, PCR accuracy has been a concern due to allelic dropout. Multiplex PCR can now increase accuracy by using multiple markers for each chromosome to firstly provide diagnosis if markers fail and,or secondly confirm diagnosis. We compare a variety of diagnostic methods and demonstrate for the first time a multiplex PCR system providing simultaneous diagnosis and confirmation of the major aneuploidy chromosomes (21, 18, 13) and sex as well as DNA fingerprint in single cells. We also discuss the implications of using PCR for aneuploidy screening in preimplantation genetic diagnosis. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Semi-aquatic animals represent a transitional locomotor condition characterised by the possession of morphological features that allow locomotion both in water and on land. Most ecologically important behaviours of crocodilians occur in the water, raising the question of whether their 'terrestrial construction' constrains aquatic locomotion. Moreover, the demands for aquatic locomotion change with life-history stage. It was the aim of this research to determine the kinematic characteristics and efficiency of aquatic locomotion in different-sized crocodiles (Crocodylus porosus). Aquatic propulsion was achieved primarily by tail undulations, and the use of limbs during swimming was observed only in very small animals or at low swimming velocities in larger animals. Over the range of swimming speeds we examined, tail beat amplitude did not change with increasing velocity, but amplitude increased significantly with body length. However, amplitude expressed relative to body length decreased with increasing body length. Tail beat frequency increased with swimming velocity but there were no differences in frequency between different-sized animals. Mechanical power generated during swimming and thrust increased non-linearly with swimming velocity, but disproportionally so that kinematic efficiency decreased with increasing swimming velocity. The importance of unsteady forces, expressed as the reduced frequency, increased with increasing swimming velocity. Amplitude is the main determinant of body-size-related increases in swimming velocity but, compared with aquatic mammals and fish, crocodiles are slow swimmers probably because of constraints imposed by muscle performance and unsteady forces opposing forward movement. Nonetheless, the kinematic efficiency of aquatic locomotion in crocodiles is comparable to that of fully aquatic mammals, and it is considerably greater than that of semi-aquatic mammals.