43 resultados para Antibody microarray


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Although there is evidence that post-mortem interval (PMI) is not a major contributor to reduced overall RNA integrity, it may differentially affect a subgroup of gene transcripts that are susceptible to PMI-related degradation. This would particularly have ramifications for microarray studies that include a broad spectrum of genes. Method: Brain tissue was removed from adult mice at 0, 6, 12, 18, 24,36 and 48 h post-mortem. RNA transcript abundance was measured by hybridising RNA from the zero time point with test RNA from each PMI time point, and differential gene expression was assessed using cDNA microarrays. Sequence and ontological analyses were performed on the group of RNA transcripts showing greater than two-fold reduction. Results: Increasing PMI was associated with decreased tissue pH and increased RNA degradation as indexed by 28S/18S ribosomal RNA ratio. Approximately 12% of mRNAs detected on the arrays displayed more than a two-fold decrease in abundance by 48 It post-mortem. An analysis of nucleotide composition provided evidence that transcripts with the AUUUA motif in the 3' untranslated region (3'UTR) were more susceptible to PMI-related RNA degradation, compared to transcripts not carrying the 3'UTR AUUUA motif. Consistent with this finding, ontological analysis showed transcription factors and elements to be over-represented in the group of transcripts susceptible to degradation. Conclusion: A subgroup of mammalian mRNA transcripts are particularly susceptible to PMI-related degradation, and as a group, they are more likely to carry the YUTR AUUUA motif. PMI should be controlled for in human and animal model post-mortem brain studies, particularly those including a broad spectrum of mRNA transcripts. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three distinct isolates of Candida albicans were used to establish systemic and oral infections in inbred mice that are genetically resistant or susceptible to tissue damage. Patterns of infection differed significantly between both yeasts and mouse strains. Systemic infection conferred significant protection against re-challenge with the homologous, but not the heterologous yeast; however, the protective effect was more evident in the tissue-susceptible CBA/CaH mice than in the resistant BALB/c strain. In contrast, oral infection induced protection against both homologous and heterologous oral challenge, although this was significant only in the CBA/CaH mice. CBA/CaH mice produced antibodies of both IgG1 and IgG2a subclasses, whereas BALB/c mice produced predominantly IgG1. Western blotting demonstrated considerable differences between epitopes recognised by serum antibodies from mice of both strains after immunisation with each of the three yeasts. Thus, different strains of yeast show considerable specificity in antibody responses elicited by either systemic or oral infection. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background More than 50% of patients with Crohn's disease become either steroid resistant or dependent. Accordingly, development of new treatments for steroid-dependent Crohn's disease is a research priority. Aim To evaluate CDP571, a humanized antibody to tumour necrosis factor-α, for the treatment of steroid-dependent Crohn's disease. Methods Patients with steroid-dependent Crohn's disease (n = 271) were enrolled in a 36-week, double-blind, placebo-controlled trial. Steroid dependence was defined as use of prednisolone or prednisone (15–40 mg/day) or budesonide (9 mg/day) for ≥8 weeks, a previous failed attempt to decrease or discontinue steroids within 8 weeks of screening, and a Crohn's Disease Activity Index score of ≤150 points. Patients were randomized to receive intravenous CDP571 10 mg/kg or placebo 8-weekly through to week 32. Steroids were then tapered using a defined schedule. The primary efficacy endpoint was the percentage of patients with steroid sparing, defined as discontinuation of steroid therapy without a disease flare (Crohn's Disease Activity Index score ≥220 points) at week 36. Results Steroid sparing occurred in 53 of 181 (29.3%) CDP571 patients and 33 of 90 (36.7%) placebo patients (P = 0.24). Adverse events occurred at similar frequencies in both treatment groups. Conclusions CDP571 was ineffective for sparing steroids in patients with steroid-dependent Crohn's disease. CDP571 was well tolerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To address the issue of melanocortin-1 receptor (MC1R) expression in non-melanocytic cells, we have quantitatively evaluated the relative expression levels of both MC1R mRNA and protein in a subset of different cell types. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at high cycle numbers, we detected MC1R mRNA in all cell types examined, including human embryonic kidney-293 (HEK 293) cells, a cell type widely used as a negative control in melanocortin expression studies. Quantitative real-time PCR revealed the highest levels of MC1R transcripts were in melanocytic cells, whereas the keratinocyte and fibroblast cell cultures examined had only a low level of expression, similar to that of HEK 293 cells. Antibody mediated detection of MC1R protein in membrane extracts demonstrated exogenous receptor in MC1R transfected cell lines, as well as endogenous MC1R in melanoma cells. However, radioligand binding procedures were required to detect MC1R protein of normal human melanocytes and no surface expression of MC1R was detected in any of the non-melanocytic cells examined. This was consistent with their low level of mRNA, and suggests that, if present, the levels of surface receptor are significantly lower than that in melanocytes. The capacity of such limited levels of MC1R protein to influence non-melanocytic skin cell biology would likely be severely compromised. Indeed, the MC1R agonist [NIe(4), D-Phe(7)] alpha-melanocyte stimulating hormone (NDP-MSH) was unable to elevate intracellular cyclic adenosine monophosphate (cAMP) levels in the keratinocyte and fibroblast cells examined, whereas a robust increase was elicited in melanocytes. Although there are a variety of cell types with detectable MC1R mRNA, the expression of physiologically significant levels of the receptor may be more restricted than the current literature indicates, and within epidermal tissue may be limited to the melanocyte

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pig-tailed macaques (Macaca nemestrina) naturally infected with West Nile virus were monitored from 1999 to 2005 to determine virus-specific antibody seroconversion, prevalence, and persistence. Antibodies persisted for up to 36 months, as detected by epitope-blocking enzyme-linked immunosorbent and hemagglutination inhibition assays. Exposure to cocirculating St. Louis encephalitis virus was evaluated by Western blotting and immunofluorescence assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the role of CD4 and CD8 cells on specific antibody production by murine Peyer's patch (PP) cells after oral immunization with Actinomyces viscosus in mice. Female DBA/2 mice were orally immunized with three low doses of heat-killed A. viscosus. Sham-immunized mice served as a control group. Mice were depleted of CD4 or CD8 cells by intraperitoneal injection of anti-CD4 or anti-CD8 antibodies daily for 3 days before oral immunization. One week after the last oral immunization, PPs were removed and cell suspensions were cultured with A. viscosus. Specific antibody production in the culture supernatants was assessed by enzyme-linked immunosorbent assay. The results showed that oral immunization with A. viscosus induced a predominant specific immunoglobulin A (IgA) response by PP cells and, to a lesser extent, IgM antibodies. Depletion of CD4 but not CD8 cells suppressed the production of specific antibodies. These results suggest that oral immunization with low doses of A. viscosus may induce the production of specific antibodies by murine PP cells in a CD4-cell-dependent fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed the molecular genetic profiles of breast cancer samples before and after neoadjuvant chemotherapy with combination doxorubicin and cyclophosphamide (AC). DNA was obtained from microdissected frozen breast core biopsies from 44 patients before chemotherapy. Additional samples were obtained before the second course of chemotherapy (D21) and after the completion of the treatment (surgical specimens) in 17 and 21 patients, respectively. Microarray-based comparative genome hybridisation was performed using a platform containing approx5800 bacterial artificial chromosome clones (genome-wide resolution: 0.9 Mb). Analysis of the 44 pretreatment biopsies revealed that losses of 4p, 4q, 5q, 12q13.11–12q13.12, 17p11.2 and 17q11.2; and gains of 1p, 2p, 7q, 9p, 11q, 19p and 19q were significantly associated with oestrogen receptor negativity. 16q21–q22.1 losses were associated with lobular and 8q24 gains with ductal types. Losses of 5q33.3–q4 and 18p11.31 and gains of 6p25.1–p25.2 and Xp11.4 were associated with HER2 amplification. No correlations between DNA copy number changes and clinical response to AC were found. Microarray-based comparative genome hybridisation analysis of matched pretreatment and D21 biopsies failed to identify statistically significant differences, whereas a comparison between matched pretreatment and surgical samples revealed a statistically significant acquired copy number gain on 11p15.2–11p15.5. The modest chemotherapy-driven genomic changes, despite profound loss of cell numbers, suggest that there is little therapeutic selection of resistant non-modal cell lineages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Biolistic injections provide a needle-free delivery of antigen-laden microparticles to the epithelium. The precision of the injection preferentially targets the Langerhans cell network, which, although ideal for vaccination, might not be suitable for the downregulation of immune responses in immunotherapy. Objective: We sought to determine the ability of biolistic injection of antigen into the epithelium of sensitized mice to inhibit IgE antibody and lung inflammatory responses produced by further exposure to antigen. Methods: Mice were sensitized by means of a needle injection of ovalbumin (OVA) in alum and given a series of biolistic injections of OVA or vehicle control, followed by a boost of OVA in alum. Serum IgE and IgG antibodies were measured before and after the boost. The mice were then challenged intranasally, and the infiltration of inflammatory cells was measured by means of bronchoalveolar lavage. Airway reactivity of the challenged mice was measured by examining responses to methacholine with forced oscillatory techniques. Results: Biolistic injection of OVA into the dorsal skin of sensitized mice markedly inhibited IgE and IgG1 antibody responses induced by boosting. IgG2a antibody responses were reduced rather than stimulated. The eosinophilic inflammation in the bronchoalveolar lavage fluid induced by intranasal challenge was also markedly inhibited. Lung hyperreactivity showed an initial increase and then a decrease of responsiveness to methacholine, with elastance returning to the level of unsensitized mice. Biolistic injection into the buccal epithelium was also inhibitory. Conclusions: Biolistic injection of allergen inhibited the boosting of IgE antibody and eosinophilic lung inflammatory responses without inducing TO immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Changes in brain gene expression are thought to be responsible for the tolerance, dependence, and neurotoxicity produced by chronic alcohol abuse, but there has been no large scale study of gene expression in human alcoholism. Methods: RNA was extracted from postmortem samples of superior frontal cortex of alcoholics and nonalcoholics. Relative levels of RNA were determined by array techniques. We used both cDNA and oligonucleotide microarrays to provide coverage of a large number of genes and to allow cross-validation for those genes represented on both types of arrays. Results: Expression levels were determined for over 4000 genes and 163 of these were found to differ by 40% or more between alcoholics and nonalcoholics. Analysis of these changes revealed a selective reprogramming of gene expression in this brain region, particularly for myelin-related genes which were downregulated in the alcoholic samples. In addition, cell cycle genes and several neuronal genes were changed in expression. Conclusions: These gene expression changes suggest a mechanism for the loss of cerebral white matter in alcoholics as well as alterations that may lead to the neurotoxic actions of ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers a model-based approach to the clustering of tissue samples of a very large number of genes from microarray experiments. It is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. Frequently in practice, there are also clinical data available on those cases on which the tissue samples have been obtained. Here we investigate how to use the clinical data in conjunction with the microarray gene expression data to cluster the tissue samples. We propose two mixture model-based approaches in which the number of components in the mixture model corresponds to the number of clusters to be imposed on the tissue samples. One approach specifies the components of the mixture model to be the conditional distributions of the microarray data given the clinical data with the mixing proportions also conditioned on the latter data. Another takes the components of the mixture model to represent the joint distributions of the clinical and microarray data. The approaches are demonstrated on some breast cancer data, as studied recently in van't Veer et al. (2002).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior frontal cortex (SFC) is selectively damaged in chronic alcohol abuse, with localized neuronal loss and tissue atrophy. Regions such as motor cortex show little neuronal loss except in severe co-morbidity (liver cirrhosis or WKS). Altered gene expression was found in microarray comparisons of alcoholic and control SFC samples [1]. We used Western blots and proteomic analysis to identify the proteins that also show differential expression. Tissue was obtained at autopsy under informed, written consent from uncomplicated alcoholics and age- and sex-matched controls. Alcoholics had consumed 80 g ethanol/day chronically (often, 200 g/day for 20 y). Controls either abstained or were social drinkers ( 20 g/day). All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were homogenized in water and clarified by brief centrifugation (1000g, 3 min) before storage at –80°C. For proteomics the thawed suspensions were centrifuged (15000g, 50 min) to prepare soluble fractions. Aliquots were pooled from SFC samples from the 5 chronic alcoholics and 5 matched controls used in the previous microarray study [1]. 2-Dimensional electrophoresis was performed in triplicate using 18 cm format pH 4–7 and pH 6–11 immobilized pH gradients for firstdimension isoelectric focusing. Following second-dimension SDS-PAGE the proteins were fluorescently stained and the images collected by densitometry. 182 proteins differed by 2-fold between cases and controls. 141 showed lower expression in alcoholics, 33 higher, and 8 were new or had disappeared. To date 63 proteins have been identified using MALDI-MS and MS-MS. Western blots were performed on uncentrifuged individual samples from 76 subjects (controls, uncomplicated alcoholics and cirrhotic alcoholics). A common standard was run on every gel. After transfer, immunolabeling, and densitometry, the intensities of the unknown bands were compared to those of the standards. We focused on proteins from transcripts that showed clear differences in a series of microarray studies, classified into common sets including Regulators of G-protein Signaling and Myelin-associated proteins. The preponderantly lower level of differentially expressed proteins in alcoholics parallels the microarray mRNA analysis in the same samples. We found that mRNA and protein expression do not frequently correspond; this may help identify pathogenic processes acting at the level of transcription, translation, or post-translationally.