45 resultados para Antarctic paleosols
Resumo:
The Antarctic nemertean worm, Parborlasia corrugatus, exhibits gigantism, reaching at least 100 g, yet lacks any specialised respiratory organs. The diffusion of oxygen into this worm occurs cutaneously. We examined the metabolic rate of P. corrugatus at -1degreesC in response to decreasing ambient PO2. As the PO2 of the water decreased. so did the metabolic rate of P. corrugatus, indicating that this nemertean worm is an extreme example of an oxyconformer. When the water PO2 decreased below about 120 mmHg, the normally short, round worms became elongated and extremely flattened. This behavioural mechanism would allow for an increase in surface area of the skin, thereby facilitating the diffusion of oxygen.
Resumo:
We determined the maximum sustained swimming speed (U-crit), and resting and maximum ventilation rates of the Antarctic fish Pagothenia borchgrevinki at five temperatures between -1degreesC and 8degreesC. We also determined resting metabolic rate (VO2) at -1degreesC, 2degreesC, and 4degreesC. U-crit of P. borchgrevinki was highest at -1degreesC (2.7+/-0.1 BL s(-1)) and rapidly decreased with temperature, representing a thermal performance breadth of only 5degreesC. This narrow thermal performance supports our prediction that specialisation to the subzero Antarctic marine environment is associated with a physiological trade-off in performance at high temperatures. Resting oxygen consumption and ventilation rate increased by more than 200% across the temperature range, which most likely contribute to the decrease in aerobic swimming capabilities at higher temperatures. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
We investigated the burst swimming performance of five species of Antarctic fish at -1.0degreesC. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (U-max) ranging from 0.91 to 1.39 m s(-1) and maximum accelerations (A(max)) ranging from 10.6 to 15.6 m s(-2). The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a U-max and A(max) of 1.39 m s(-1) and 15.6 m s(-2), respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophiles
Resumo:
Specialization to a particular environment is one of the main factors used to explain species distributions. Antarctic fishes are often cited as a classic example to illustrate the specialization process and are regarded as the archetypal stenotherms. Here we show that the Antarctic fish Pagothenia borchgrevinki has retained the capacity to compensate for chronic temperature change. By displaying astounding plasticity in cardiovascular response and metabolic control, the fishes maintained locomotory performance at elevated temperatures. Our falsification of the specialization paradigm indicates that the effect of climate change on species distribution and extinction may be overestimated by current models of global warming.
Resumo:
The impact of ambient ultraviolet (UV)-B radiation on the endemic bryophyte, Grimmia antarctici, was studied over 14 months in East Antarctica. Over recent decades, Antarctic plants have been exposed to the largest relative increase in UV-B exposure as a result of ozone depletion. We investigated the effect of reduced UV and visible radiation on the pigment concentrations, surface reflectance and physiological and morphological parameters of this moss. Plexiglass screens were used to provide both reduced UV levels (77%) and a 50% decrease in total radiation. The screen combinations were used to separate UV photoprotective from visible photoprotective strategies, because these bryophytes are growing in relatively high light environments compared with many mosses. G. antarctici was affected negatively by ambient levels of UV radiation. Chlorophyll content was significantly lower in plants grown under near-ambient UV, while the relative proportions of photoprotective carotenoids, especially beta-carotene and zeaxanthin, increased. However, no evidence for the accumulation of UV-B-absorbing pigments in response to UV radiation was observed. Although photosynthetic rates were not affected, there was evidence of UV effects on morphology. Plants that were shaded showed fewer treatment responses and these were similar to the natural variation observed between moss growing on exposed microtopographical ridges and in more sheltered valleys within the turf. Given that other Antarctic bryophytes possess UV-B-absorbing pigments which should offer better protection under ambient UV-B radiation, these findings suggest that G. antarctici may be disadvantaged in some settings under a climate with continuing high levels of springtime UV-B radiation.
Resumo:
Climate change is expected to affect the high latitudes first and most severely, rendering Antarctica one of the most significant baseline environments for the study of global climate change. The indirect effects of climate warming, including changes to the availability of key environmental resources, such as water and nutrients, are likely to have a greater impact upon continental Antarctic terrestrial ecosystems than the effects of fluctuations in temperature alone. To investigate the likely impacts of a wetter climate on Antarctic terrestrial communities a multiseason, manipulative field experiment was conducted in the floristically important Windmill Islands region of East Antarctica. Four cryptogamic communities (pure bryophyte, moribund bryophyte, crustose and fructicose lichen-dominated) received increased water and/or nutrient additions over two consecutive summer seasons. The increased water approximated an 18% increase in snow melt days (0.2 degrees C increase in temperature), while the nutrient addition of 3.5g Nm(-2) yr(-1) was within the range of soil N in the vicinity. A range of physiological and biochemical measurements were conducted in order to quantify the community response. While an overall increase in productivity in response to water and nutrient additions was observed, productivity appeared to respond more strongly to nutrient additions than to water additions. Pure bryophyte communities, and lichen communities dominated by the genus Usnea, showed stronger positive responses to nutrient additions, identifying some communities that may be better able to adapt and prosper under the ameliorating conditions associated with a warmer, wetter future climate. Under such a climate, productivity is overall likely to increase but some cryptogamic communities are likely to thrive more than others. Regeneration of moribund bryophytes appears likely only if a future moisture regime creates consistently moist conditions.
Resumo:
Antarctic bryophyte communities presently tolerate physiological extremes in water availability, surviving both desiccation and submergence events. We investigated the relative ability of three Antarctic moss species to tolerate physiological extremes in water availability and identified physiological, morphological, and biochemical characteristics that assist species performance under such conditions. Tolerance of desiccation and submergence was investigated using chlorophyll fluorescence during a series of field- and laboratory-based water stress events. Turf water retention and degree of natural habitat submergence were determined from gametophyte shoot size and density, and delta C-13 signatures, respectively. Finally, compounds likely to assist membrane structure and function during desiccation events (fatty acids and soluble carbohydrates) were determined. The results of this study show significant differences in the performance of the three study species under contrasting water stress events. The results indicate that the three study species occupy distinctly different ecological niches with respect to water relations, and provide a physiological explanation for present species distributions. The poor tolerance of submergence seen in Ceratodon purpureus helps explain its restriction to drier sites and conversely, the low tolerance of desiccation and high tolerance of submergence displayed by the endemic Grimmia antarctici is consistent with its restriction to wet habitats. Finally the flexible response observed for Bryum pseudotriquetrum is consistent with its co-occurrence with the other two species across the bryophyte habitat spectrum. The likely effects of future climate change induced shifts in water availability are discussed with respect to future community dynamics.
Resumo:
Sediments, mosses and algae, collected from lake catchments of the Larsemann Hills, East Antarctica, were analysed to establish baseline levels of trace metals (Ag, As, Cd, Co, Cr, Cu, Ni, Sb, Pb, Se, V and Zn), and to quantify the extent of trace metal pollution in the area. Both impacted and non-impacted sites were included in the study. Four different leaching solutions (1 M MgCl2, 1 M CH3COONH4, 1 M NH4NO3, and 0.3 N HCl) were tested on the fine fraction (< 63 mu m) of the sediments to extract the mobile fraction of trace metals derived from human impact and from weathering of basement lithologies. Results of these tests indicate that dilute HCl partly dissolves primary minerals present in the sediment, thus leading to an overestimate of the mobile trace metal fraction. Concentrations of trace metals released using the other 3 procedures indicate negligible levels of anthropogenic contribution to the trace metal budget. Data derived from this study and a thorough characterisation of the site allowed the authors to define natural baseline levels of trace metals in sediments, mosses and algae, and their spatial variability across the area. The results show that, with a few notable exceptions, human activities at the research stations have contributed negligible levels (lower than natural variability) of trace metals to the Larsemann Hills ecosystem. This study further demonstrates that anthropogenic sources of trace metals can be correctly identified and quantified only if natural baselines, their variability, and processes controlling the mobility of trace metals in the ecosystem, have been fully characterised. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The concentrations of major, minor and trace metals were measured in water samples collected from five shallow Antarctic lakes (Carezza, Edmonson Point (No 14 and 15a), Inexpressible Island and Tarn Flat) found in Terra Nova Bay (northern Victoria Land, Antarctica) during the Italian Expeditions of 1993-2001. The total concentrations of a large suite of elements (Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Gd, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Rb, Sc, Si, Sr, Ta, Ti, U, V, Y, W, Zn and Zr) were determined using spectroscopic techniques (ICP-AES, GF-AAS and ICP-MS). The results are similar to those obtained for the freshwater lakes of the Larsemann Hills, East Antarctica, and for the McMurdo Dry Valleys. Principal Component Analysis (PCA) and Cluster Analysis (CA) were performed to identify groups of samples with similar characteristics and to find correlations between the variables. The variability observed within the water samples is closely connected to the sea spray input; hence, it is primarily a consequence of geographical and meteorological factors, such as distance from the ocean and time of year. The trace element levels, in particular those of heavy metals, are very low, suggesting an origin from natural sources rather than from anthropogenic contamination.