21 resultados para Anisotropy
Resumo:
Amyloid-beta peptide (A beta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic A beta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/ peptide ratios of > 0.6:1 by EPR spectroscopy. The toxicity of the A beta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi- or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl- 1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. P-31 magic angle spinning solid-state NMR showed that A beta and A beta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the A beta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.
Resumo:
We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.
Resumo:
We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials K-(BEDT-TTF)(2)X, The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase diagrams for each model. The Sp(N) :antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite N are also discussed. For parameters relevant to Cs2CuCl4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap, A metal-insulator transition occurs at intermediate values of the interaction strength.
Resumo:
Dimethyl sulfide dehydrogenase from the purple phototrophic bacterium Rhodovulum sulfidophilum catalyzes the oxidation of dimethyl sulfide to dimethyl sulfoxide. Recent DNA sequence analysis of the ddh operon, encoding dimethyl sulfide dehydrogenase (ddhABC), and biochemical analysis (1) have revealed that it is a member of the DMSO reductase family of molybdenum enzymes and is closely related to respiratory nitrate reductase (NarGHI). Variable temperature X-band EPR spectra (120122 K) of purified heterotrimeric dimethyl sulfide dehydrogenase showed resonances arising from multiple redox centers, Mo(V), [3Fe-4S](+), [4Fe-4S](+), and a b-type heme. A pH-dependent EPR study of the Mo(V) center in (H2O)-H-1 and (H2O)-H-2 revealed the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(v)-anion, and Mo(V)-OH. Above pH 8.2 the dominant species was Mo(V)-OH. The maximum specific activity occurred at pH 9.27. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other molybdenum enzymes of the DMSO reductase family showed that it was most similar to the low-pH nitrite spectrum of Escherichia coli nitrate reductase (NarGHI), consistent with previous sequence analysis of DdhA and NarG. A sequence comparison of DdhB and NarH has predicted the presence of four [Fe-S] clusters in DdhB. A [3Fe-4S](+) cluster was identified in dimethyl sulfide dehydrogenase whose properties resembled those of center 2 of NarH. A [4Fe-4S](+) cluster was also identified with unusual spin Hamiltonian parameters, suggesting that one of the iron atoms may have a fifth non-sulfur ligand. The g matrix for this cluster is very similar to that found for the minor conformation of center 1 in NarH [Guigliarelli, B., Asso, M., More, C., Augher, V., Blasco, F., Pommier, J., Giodano, G., and Bertrand, P. (1992) Eur. J. Biochem. 307,63-68]. Analysis of a ddhC mutant showed that this gene encodes the b-type cytochrome in dimethyl sulfide dehydrogenase. Magnetic circular dichroism studies revealed that the axial ligands to the iron in this cytochrome are a histidine and methionine, consistent with predictions from protein sequence analysis. Redox potentiometry showed that the b-type cytochrome has a high midpoint redox potential (E-o = +315 mV, pH 8).
Resumo:
A comprehensive probabilistic model for simulating microstructure formation and evolution during solidification has been developed, based on coupling a Finite Differential Method (FDM) for macroscopic modelling of heat diffusion to a modified Cellular Automaton (mCA) for microscopic modelling of nucleation, growth of microstructures and solute diffusion. The mCA model is similar to Nastac's model for handling solute redistribution in the liquid and solid phases, curvature and growth anisotropy, but differs in the treatment of nucleation and growth. The aim is to improve understanding of the relationship between the solidification conditions and microstructure formation and evolution. A numerical algorithm used for FDM and mCA was developed. At each coarse scale, temperatures at FDM nodes were calculated while nucleation-growth simulation was done at a finer scale, with the temperature at the cell locations being interpolated from those at the coarser volumes. This model takes account of thermal, curvature and solute diffusion effects. Therefore, it can not only simulate microstructures of alloys both on the scale of grain size (macroscopic level) and the dendrite tip length (mesoscopic level), but also investigate nucleation mechanisms and growth kinetics of alloys solidified with various solute concentrations and solidification morphologies. The calculated results are compared with values of grain sizes and solidification morphologies of microstructures obtained from a set of casting experiments of Al-Si alloys in graphite crucibles.
Resumo:
In humans, age estimation from the adult skeleton represents an attempt to determine chronological age based on growth and maturational events. In teeth, such events can be characterized by appositional growth layers in midroot cementum. The purpose of this study was to determine the underlying cause of the layered microstructure of human midroot cementum. Whether cementum growth layers are caused by changes in relative mineralization, collagen packing and/or orientation, or by variations in organic matrix apposition was investigated by subjecting midroot sections of human canine teeth to analysis using polarized light and scanning electron microscopy (SEM). Polarized light was used to examine transverse midroot sections in both mineralized and demineralized states. Mineralized sections were also reexamined following subsequent decollagenization. Polarized light was additionally used in the examination of mineralized sections taken transversely, longitudinally, and obliquely from the same tooth root. From the birefringence patterns it was concluded that collagen orientation does not change with varying section plane. Instead, the mineral phase was most responsible for the birefringence of the cementum. SEM studies suggested that neither collagen packing nor collagen orientation change across the width of the cementum, confirming and validating the results of the polarized light examination. Also, SEM analysis using electron backscatter and the electron probe suggested no changes in the mean atomic number density, calcium, phosphate, and sulfur levels across the width of the cementum. Therefore, we conclude that crystalline orientation and/or size is responsible for the layered appearance of cementum. (Bone 30:386-392; 2002) (C) 2002 by Elsevier Science Inc. All rights reserved.