20 resultados para Ancestor worship.
Resumo:
Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infection (UTI), very little is known about the mechanisms by which these strains colonize the urinary tract. Bacterial adhesion conferred by specific surface-associated adhesins is normally considered as a prerequisite for colonization of the urinary tract. The prototype ABU E coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. This study characterized the molecular status of one of the primary adhesion factors known to be associated with UTI, namely F1C fimbriae, encoded by the foc gene cluster. F1C fimbriae recognize receptors present in the human kidney and bladder. Expression of the foc genes was found to be up-regulated in human urine. It was also shown that although strain 83972 contains a seemingly intact foc gene cluster, F1C fimbriae are not expressed. Sequencing and genetic complementation revealed that the focD gene, encoding a component of the F1C transport and assembly system, was non-functional, explaining the inability of strain 83972 to express this adhesin. The data imply that E. coli 83972 has lost its ability to express this important colonization factor as a result of host-driven evolution. The ancestor of the strain seems to have been a pyelonephritis strain of phylogenetic group B2. Strain 83972 therefore represents an example of bacterial adaptation from pathogenicity to commensalism through virulence factor loss.
Resumo:
Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.
Resumo:
Three-dimensional structures have been determined for 13 different enzymes that use thiamine diphosphate (ThDP) as a cofactor. These enzymes fall into five families, where members within a family have similar structures. In different families, there are similarities between some domains that clearly point to a common ancestor for all of these enzymes. Where the enzyme structures differ, evolutionary relationships between families can be discerned. Here, I present an analysis of these families and propose an evolutionary pathway to explain the diversity of structures that are now known.
Resumo:
The gene content of a mitochondrial (mt) genome, i.e., 37 genes and a large noncoding region (LNR), is usually conserved in Metazoa. The arrangement of these genes and the LNR is generally conserved at low taxonomic levels but varies substantially at high levels. We report here a variation in mt gene content and gene arrangement among chigger mites of the genus Leptotrombidium. We found previously that the mt genome of Leptotrombidium pallidum has an extra gene for large-subunit rRNA (rrnL), a pseudo-gene for small-subunit rRNA (PrrnS), and three extra LNRs, additional to the 37 genes and an LNR typical of Metazoa. Further, the arrangement of mt genes of L. pallidum differs drastically from that of the hypothetical ancestor of the arthropods. To find to what extent the novel gene content and gene arrangement occurred in Leptotrombidium, we sequenced the entire or partial mt genomes of three other species, L. akamushi, L. deliense, and L. fletcheri. These three species share the arrangement of all genes with L. pallidum, except trnQ (for tRNA-glutamine). Unlike L. pallidum, however, these three species do not have extra rrnL or PrrnS and have only one extra LNR. By comparison between Leptotrombidium species and the ancestor of the arthropods, we propose that (1) the type of mt genome present in L. pallidum evolved from the type present in the other three Leptotrombidium species, and (2) three molecular mechanisms were involved in the evolution of mt gene content and gene arrangement in Leptotrombidium species.
Resumo:
The biphasic (pelagobenthic) life cycle is found throughout the animal kingdom, and includes gametogenesis, embryogenesis, and metamorphosis. From a tangled web of hypotheses on the origin and evolution of the metazoan pelagobenthic life cycle, current opinion appears to favor a simple, larval-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This hypothesis derives originally from Haeckel's (1874) Gastraea theory of ontogeny recapitulating phylogeny, in which the gastrula is viewed as the recapitulation of a gastracan ancestor that evolved via selection on a simple, planktonic hollow ball of cells to develop the capacity to feed. Here, we propose an equally plausible hypothesis that the origin of the metazoan pelagobenthic life cycle was a direct consequence of sexual reproduction in a likely holobenthic ancestor. In doing so, we take into account new insights from poriferan development and from molecular phylogenies. In this scenario, the gastrula does not represent a recapitulation, but simply an embryological stage that is an outcome of sexual reproduction. The embryo can itself be considered as the precursor to a biphasic lifestyle, with the embryo representing one phase and the adult another phase. This hypothesis is more parsimonious because it precludes the need for multiple, independent origins of the benthic form. It is then reasonable to consider that multilayered, ciliated embryos ultimately released into the water column are subject to natural selection for dispersal/longevity/feeding that sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. These new insights from poriferan development thus clearly support the intercalation hypothesis of bilaterian larval evolution, which we now believe should be extended to discussions of the origin of biphasy in the metazoan last common ancestor.