27 resultados para Anatase Domains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the presence of a unique dual domain carbonic anhydrase (CA) in the giant clam, Tridacna gigas. CA plays an important role in the movement of inorganic carbon (C-i) from the surrounding seawater to the symbiotic algae that are found within the clam's tissue. One of these isoforms is a glycoprotein which is significantly larger (70 kDa) than any previously reported from animals (generally between 28 and 52 kDa). This alpha-family CA contains two complete carbonic anhydrase domains within the one protein, accounting for its large size; dual domain CAs have previously only been reported from two algal species. The protein contains a leader sequence, an N-terminal CA domain and a C-terminal CA domain. The two CA domains have relatively little identity at the amino acid level (29%). The genomic sequence spans in excess of 17 kb and contains at least 12 introns and 13 exons. A number of these introns are in positions that are only found in the membrane attached/secreted CAs. This fact, along with phylogenetic analysis, suggests that this protein represents the second example of a membrane attached invertebrate CA and it contains a dual domain structure unique amongst all animal CAs characterized to date.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane organization describes the orientation of a protein with respect to the membrane and can be determined by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified into one of five membrane organization categories: soluble intracellular proteins, soluble secreted proteins, type I membrane proteins, type II membrane proteins, and multi- spanning membrane proteins. Generation of protein isoforms with variable membrane organizations can change a protein's subcellular localization or association with the membrane. Application of MemO, a membrane organization annotation pipeline, to the FANTOM3 Isoform Protein Sequence mouse protein set revealed that within the 8,032 transcriptional units ( TUs) with multiple protein isoforms, 573 had variation in their use of signal peptides, 1,527 had variation in their use of transmembrane domains, and 615 generated protein isoforms from distinct membrane organization classes. The mechanisms underlying these transcript variations were analyzed. While TUs were identified encoding all pairwise combinations of membrane organization categories, the most common was conversion of membrane proteins to soluble proteins. Observed within our highconfidence set were 156 TUs predicted to generate both extracellular soluble and membrane proteins, and 217 TUs generating both intracellular soluble and membrane proteins. The differential use of endoplasmic reticulum signal peptides and transmembrane domains is a common occurrence within the variable protein output of TUs. The generation of protein isoforms that are targeted to multiple subcellular locations represents a major functional consequence of transcript variation within the mouse transcriptome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let Ω be a smooth exterior domain in ℝN and 1 < p < ∞. We prove that when p ≠ N, Hardy's LP inequality is valid on D01,p(Ω). ©2005 American Mathematical Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The virulence of Pseudomonas aeruginosa and other surface pathogens involves the coordinate expression of a wide range of virulence determinants, including type IV pili. These surface filaments are important for the colonization of host epithelial tissues and mediate bacterial attachment to, and translocation across, surfaces by a process known as twitching motility. This process is controlled in part by a complex signal transduction system whose central component, ChpA, possesses nine potential sites of phosphorylation, including six histidine-containing phosphotransfer (HPt) domains, one serine-containing phosphotransfer domain, one threonine-containing phosphotransfer domain, and one CheY-like receiver domain. Here, using site-directed mutagenesis, we show that normal twitching motility is entirely dependent on the CheY-like receiver domain and partially dependent on two of the HPt domains. Moreover, under different assay conditions, point mutations in several of the phosphotransfer domains of ChpA give rise to unusual "swarming" phenotypes, possibly reflecting more subtle perturbations in the control of P. aeruginosa motility that are not evident from the conventional twitching stab assay. Together, these results suggest that ChpA plays a central role in the complex regulation of type IV pilus-mediated motility in P. aeruginosa