63 resultados para Anaerobic Reactor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N-2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this achievement turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and micro-sensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22 - 80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations ( approximate to 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be > 20mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a sulfide-removal system based on biofilms dominated by green sulfur bacteria (GSB) has been investigated. The system was supplied with radiant energy in the band 720-780 nm, and fed with a synthetic wastewater. The areal net sulfide removal rate and the efficacy of the incident radiant energy for sulfide removal have been characterized over ranges of bulk sulfide concentration (1.6-11.5 mg L-1) and incident irradiance (0.21-1.51 W m(-2)). The areal net sulfide removal rate increased monotonically with both increasing incident irradiance and increasing bulk sulfide concentration. The efficacy of the radiant energy for sulfide removal (the amount of sulfide removed per unit radiant energy supplied) also increased monotonically with rising bulk sulfide concentration, but exhibited a maximum value with respect to incident irradiance. The maximum observed values of this net removal rate and this efficacy were, respectively, 2.08 g m(-2) d(-1) and 2.04 g W-1 d(-1). In-band changes in the spectral composition of the radiant energy affected this efficacy only slightly. The products of sulfide removal were sulfate and elemental-S. The elemental-S was scarcely released into the liquid, however, and reasons for this, such as sulfur reduction and polysulfide formation, are considered. Between 1.45 and 3.85 photons were needed for the net removal of one electron from S-species. Intact samples of the biofilm were characterized by microscopy, and their thicknesses lay between 39 +/- 9 and 429 +/- 57 mum. The use of the experimentally determined rates and efficacies for the design of a pilot-scale system is illustrated. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response of an aerobic upflow sludge blanket (AUSB) reactor system to the changes in operating conditions was investigated by varying two principle operating variables: the oxygenation pressure and the flow recirculation rate. The oxygenation pressure was varied between 0 and 25 psig (relative), while flow recirculation rates were between 1,300 and 600% correspondingly. The AUSB reactor system was able to handle a volumetric loading of as high as 3.8 kg total organic carbon (TOC)/m(3) day, with a removal efficiency of 92%. The rate of TOC removal by AUSB was highest at a pressure of 20 psig and it decreased when the pressure was increased to 25 psig and the flow recirculation rate was reduced to 600%. The TOC removal rate also decreased when the operating pressure was reduced to 0 and 15 psig, with corresponding increase in flow recirculation rates to 1,300 and 1,000%, respectively. Maintenance of a high dissolved oxygen level and a high flow recirculation rate was found to improve the substrate removal capacity of the AUSB system. The AUSB system was extremely effective in retaining the produced biomass despite a high upflow velocity and the overall sludge yield was only 0.24-0.32 g VSS/g TOC removed. However, the effluent TOC was relatively high due to the system's operation at a high organic loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have determined that Pseudomonas aeruginosa can live in a biofilm mode within hypoxic mucus in the airways of patients with cystic fibrosis (CF). P. aeruginosa grown under anaerobic and biofilm conditions may better approximate in vivo growth conditions in the CF airways, and combination antibiotic susceptibility testing of anaerobically and biofilm-grown isolates may be more relevant than traditional susceptibility testing under planktonic aerobic conditions. We tested 16 multidrug-resistant isolates of P. aeruginosa derived from CF patients using multiple combination bactericidal testing to compare the efficacies of double and triple antibiotic combinations against the isolates grown under traditional aerobic planktonic conditions, in planktonic anaerobic conditions, and in biofilm mode. Both anaerobically grown and biofilm-grown bacteria were significantly less susceptible (P < 0.01) to single and combination antibiotics than corresponding aerobic planktonically grown isolates. Furthermore, the antibiotic combinations that were bactericidal under anaerobic conditions were often different from those that were bactericidal against the same organisms grown as biofilms. The most effective combinations under all conditions were colistin (tested at concentrations suitable for nebulization) either alone or in combination with tobramycin (10 mu g ml(-1)), followed by meropenem combined with tobramycin or ciprofloxacin. The findings of this study illustrate that antibiotic sensitivities are dependent on culture conditions and highlight the complexities of choosing appropriate combination therapy for multidrug-resistant P. aeruginosa in the CF lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB(TM)/Simulink(R) is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In enhanced biological phosphorus removal (EBPR) processes, glycogen-accumulating organisms (GAOs) may compete with polyphosphate-accumulating organisms (PAOs) for the often-limited carbon substrates, potentially resulting in disturbances to phosphorus removal. A detailed investigation of the effect of pH on the competition between PAOs and GAOs is reported in this study. The results show that a high external pH (similar to 8) provided PAOs with an advantage over GAOs in EBPR systems. The phosphorus removal performance improved due to a population shift favouring PAOs over GAOs, which was shown through both chemical and microbiological methods. Two lab-scale reactors fed with propionate as the carbon source were subjected to an increase in pH from 7 to 8. The phosphorus removal and PAO population (as measured by quantitative fluorescence in situ hybridisation analysis of Candidatus Accumulibacter phosphatis) increased in each system, where the PAOs appeared to out-compete a group of Alphaproteobacteria GAOs. A considerable improvement in the P removal was also observed in an acetate fed reactor, where the GAO population (primarily Candidatus Competibacter phosphatis) decreased substantially after a similar increase in the pH. The results from this study suggest that pH could be used as a control parameter to reduce the undesirable proliferation of GAOs and improve phosphorus removal in EBPR systems. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This study was conducted to determine the component that causes the disease in rheumatoid arthritis (RA), which shows great resemblance to periodontitis in a pathologic context. MATERIALS AND METHODS: Within this study, the pathogen-specific IgG levels formed against Porphyromonas gingivalis FDC 381, Prevotella melaninogenica ATCC 25845, Actinobacillus actinomycetemcomitans Y4, Bacteroides forsythus ATCC 43047, and Prevotella intermedia 25611 oral bacteria were researched from the blood serum samples of 30 RA patients and 20 healthy controls with the enzyme-linked immunosorbent assay (ELISA) method. RESULTS: The IgG levels of P gingivalis, P intermedia, P melaninogenica, and B forsythus were found to be significantly higher in RA patients when compared with those of the controls. Of the other bacteria antibodies, A actinomycetemcomitans was not found at greater levels in RA serum samples in comparison with the healthy samples. CONCLUSION: The antibodies formed against P gingivalis, P intermedia, P melaninogenica, and B forsythus could be important to the etiopathogenesis of RA.