99 resultados para Al-Si-Cu(4) alloy
Resumo:
The effect of eutectic modification by strontium on nucleation and growth of the eutectic in hypoeutectic Al-Si foundry alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from three hypoeutectic AlSi base alloys with 5, 7 and 10 mass%Si and with different strontium contents up to 740 ppm for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites? the growth mode of the eutectic could be determined. The mapping results indicate that the eutectic grew from the primary phase in unmodified alloys. When the eutectic was modified by strontium, eutectic grains nucleated separately from the primary dendrites. However, in alloys with high strontium levels, the eutectic again grew from the primary phase. These observed effects of strontium additions on the eutectic solidification mode are independent of silicon content in the range between 5 and 10 mass%Si.
Resumo:
The effect of strontium (Sr), antimony (Sb) and phosphorus (P) on nucleation and growth mode of the eutectic in hypoeutectic Al-10 mass%Si alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from a hypoeutectic Al-10 mass%Si base alloy, adding different levels of strontium, antimony and phosphorus for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites, the solidification mode of the eutectic could be determined. The results of these studies show that the eutectic nucleation mode, and subsequent growth mode, is strongly dependent on additive elements. The EBSD mapping results indicate that the eutectic grew from the primary phase in unmodified and phosphorus-containing alloys. When the eutectic was modified by strontium or antimony, eutectic grains nucleated and grew separately from the primary dendrites.
Resumo:
Nucleation and growth of the eutectic, in hypoeutectic Al-Si foundry alloys has been investigated by the electron backscatter diffraction (EBSD) mapping technique using a scanning electron microscope (SEM). Sample preparation procedures for optimizing mapping have been developed. To obtain a sufficiently smooth surface from a cast Al-Si eutectic microstructure for EBSD mapping, an appropriate preparation technique by ion milling was developed and applied instead of conventional electropolishing. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites, the growth mechanism of the eutectic can be determined. Two different results were found, in isolation or sometimes together, but distinct for different strontium contents: (1) crystallographic orientations of aluminum in eutectic and surrounding primary dendrites are identical, and (2) wide variation in orientations of the aluminum in the eutectic. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
It is generally accepted that growth of eutectic silicon in aluminium-silicon alloys occurs by a twin plane re-entrant edge (TPRE) mechanism. It has been proposed that modification of eutectic silicon by trace additions occurs due to a massive increase in the twin density caused by atomic effects at the growth interface. In this study, eutectic microstructures and silicon twin densities in samples modified by elemental additions of barium (Ba), calcium (Ca), yttrium (Y) and ytterbium (Yb) (elements chosen due to a near-ideal atomic radii for twinning) in an A356.0 alloy have been determined by optical microscopy, thermal analysis, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Addition of barium or calcium caused the silicon structure to transform to a fine fibrous morphology, while the addition of yttrium or ytterbium resulted in a refined plate-like eutectic structure. Twin densities in all modified samples are higher than in unmodified alloys, and there are no significant differences between fine fibrous modification (by Ba and Ca) and refined plate-like modification (by Y and Yb). The twin density in all modified samples is less than expected based on the predictions by the impurity induced twining model. Based on these results it is difficult to explain the modification with Ba, Ca, Y and Yb by altered twin densities alone.
Resumo:
The effects of boron on the eutectic modification and solidification mode of hypoeutectic Al-Si alloys have been studied adding different boride phases. The results show that boron does not cause modification of the eutectic silicon. Boron-containing samples display eutectic nucleation and growth characteristics similar to that of unmodified alloys. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The effects of different concentrations of individual additions of rare earth metals (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) on eutectic modification in Al-10mass%Si has been studied by thermal analysis and optical microscopy. According to the twin-plane re-entrant edge (TPRE) and impurity induced twinning mechanism, rare earth metals with atomic radii of about 1.65 times larger than that of silicon, are possible candidates for eutectic modification. All of the rare earth elements caused a depression of the eutectic growth temperature, but only Eu modified the eutectic silicon to a fibrous morphology. At best, the remaining elements resulted in only a small degree of refinement of the plate-like silicon. The samples were also quenched during the eutectic arrest to examine the eutectic solidification modes. Many of the rare-earth additions significantly altered the eutectic solidification mode from that of the unmodified alloy. It is concluded that the impurity induced twinning model of modification, based on atomic radius alone, is inadequate and other mechanisms are essential for the modification process. Furthermore, modification and the eutectic nucleation and growth modes are controlled independently of each other.
Resumo:
In addition to a change in silicon morphology, modification of aluminium-silicon alloys with strontium or sodium increases the size of the eutectic grains. To determine the mechanism responsible, eutectic solidification in commercial purity and ultra-high purity aluminium-si I icon alloys, with and without strontium additions, was examined by a quenching technique. In the commercial unmodified alloy, nucleation was prolific while in the high-purity unmodified alloy few eutectic grains nucleated. The addition of strontium to the commercial alloy reduced the number of eutectic grains that nucleated. Addition of strontium to the high-purity alloy did not significantly alter nucleation. It is concluded that commercial purity alloys contain a large number of potent nuclei that are susceptible to poisoning by impurity modification. The flake-to-fibre transition that occurs with impurity modification is shown to be independent of any change in eutectic nucleation mode and frequency. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Banded defects are often found in high-pressure die castings. These bands can contain segregation, porosity, and/or tears, and changing casting conditions and alloy are known to change the position and make-up of the bands. Due to the complex, dynamic nature of the high-pressure die-casting (HPDC) process, it is very difficult to study the effect of individual parameters on band formation. In the work presented here, bands of segregation similar to those found in cold-chamber HPDC aluminum alloys were found in laboratory gravity die castings. Samples were cast with a range of fraction solids from 0 to 0.3 and the effect of die temperature and external solid fraction on segregation bands was investigated. The results are considered with reference to the theological properties of the filling semisolid metal and a formation mechanism for bands is proposed by considering flow past a solidifying immobile wall layer.
Resumo:
The as-cast three-dimensional morphologies of alpha-Al-15(Fe,Mn)(3)Si-2 and beta-Al5FeSi intermetallics were investigated by serial sectioning. Large beta-Al5FeSi intermetallics were observed to grow around pre-existing dendrite arms. The alpha-Al-15(Fe,Mn)(3)Si-2 intermetallic particle was observed to have a central polyhedral particle and an external highly convoluted three-dimensional structure. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
From recent published data, it is still unclear whether combining additions of Na and Sr have synergistic effects or deleterious interactions, This paper clarifies the interactions between these two modifiers and investigates the effects of such interactions on alloy solidification and castability. It was found that combined additions of Sr and Na do not appear to cause improvement of the modification of the eutectic microstructure even after only a short period after addition. Na addition may promote Sr vaporization and/or oxidation kinetically. leading to a quicker loss of both modifiers, which is blamed for the rapid loss of the modification effect during melt holding. Quenching trials during the eutectic arrest indicate that addition of Sr into Na-modified melts does not alter the eutectic solidification behaviour The effect of Na on eutectic solidification dominates, and the eutectic is observed to evolve with a significant dependency on the thermal gradient, Combining Sr and Na additions produced no beneficial effects on porosity and casting defects. (c) 2005 Elsevier B.V. All rights reserved.