33 resultados para Ak-509
Resumo:
Retention of green leaf area at maturity (GLAM), known as stay-green, is used as an indicator of postanthesis drought resistance in sorghum [Sorghum bicolor (L.) Moench] breeding programs in the USA and Australia. The critical issue is whether maintaining green leaves under postanthesis drought increases grain yield in stay-green compared with senescent hybrids. Field studies were undertaken in northeastern Australia on a cracking and self-mulching gay clay. Nine closely related hybrids varying in rate of leaf senescence were grown under two water-limiting regimes, post-flowering water deficit and terminal (pre- and postflowering) water deficit, and a fully irrigated control. Under terminal water deficit, grain yield tvas correlated positively with GLAM (r = 0.75**) and negatively with rate of leaf senescence (r = -0.74**). Grain yield also increased by approximate to 0.35 Mg ha(-1) for every day that onset of leaf senescence was delayed beyond 76 DAE in the water-limited treatments. Stay-green hybrids produced 47% more postanthesis biomass than their senescent counterparts (920 vs. 624 g m(-2)) under the terminal water deficit regime. No differences in grain yield were found among eight of the nine hybrids under fully irrigated conditions, suggesting that the stay-green trait did not constrain yield in the well-watered control. The results indicate that sorghum hybrids possessing the stay-green trait have a significant yield advantage under postanthesis drought compared with hybrids not possessing this trait.
Resumo:
Sorghum [Sorghum bicolor (L,) Moench] hybrids containing the stay-green trait retain more photosynthetically active leaves under drought than do hybrids that do not contain this trait. Since the Longevity and photosynthetic capacity of a leaf are related to its N status, it is important to clarify the role of N in extending leaf greenness in stay-green hybrids. Field studies were conducted in northeastern Australia to examine the effect of three water regimes and nine hybrids on N uptake and partitioning among organs. Nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a fully irrigated control, post-flowering water deficit, and terminal water deficit. For hybrids grown under terminal water deficit, stay-green was viewed as a consequence of the balance between N demand by the grain and N supply during gain filling. On the demand side, grain numbers were 16% higher in the four stay-green than in the five senescent hybrids. On the supply side, age-related senescence provided an average of 34 and 42 kg N ha(-1) for stay-green and senescent hybrids, respectively. In addition, N uptake during grain filling averaged 116 and 82 kg ha(-1) in stay-green and senescent hybrids. Matching the N supply from these two sources with grain N demand found that the shortfall in N supply for grain filling in the stay-green and senescent hybrids averaged 32 and 41 kg N ha(-1) resulting in more accelerated leaf senescence in the senescent hybrids. Genotypic differences in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen and N uptake during grain filling. Leaf nitrogen concentration at anthesis was correlated with onset (r = 0.751**, n = 27) and rate (r = -0.783**, n = 27) of leaf senescence ender terminal water deficit.
Resumo:
The polycondensation of squaric acid with 1,2-(9-Ethylcarbazol-3-yl)ethene and N-ethyliminostilbene in polyphosphoric acid yielded insoluble polymers which included substituted phosphate groups on the phenyl rings. The presence of phosphorus in these polymers was identified using solid-state P-31 NMR and EDAX techniques. Furthermore the phosphate groups were not ionic, hence no charge-balancing anions were present; Both polymers did not electrically conduct but exhibited dielectric breakdown values of 0.1 and 0.06 MV cm(-1) respectively.
Resumo:
Changes in molecular motion in blends of PEO-PVPh have been studied using measurements of C-13 T-1 rho relaxation times. C-13 T-1 rho relaxation has been confirmed as arising from spin-lattice interactions by observation of the variation in T-1 rho with rf field strength and temperature. In the pure homopolymers a minimum in T-1 rho is observed at ca. 50 K above the glass transition temperatures detected by DSC. After blending, the temperature of the minimum in T-1 rho for PEO increased, while that for PVPh decreased, however, the minima, which correspond to the temperatures where the average correlation times for reorientation are close to 3.1 mu s, are separated by 45 K (in a 45% PEO-PVPh blend). These phenomena are explained in terms of the local nature of T-1 rho measurements. The motions of the individual homopolymer chains are only partially coupled in the blend. A short T-1 rho has been observed for protonated aromatic carbons, and assigned to phenyl rings undergoing large-angle oscillatory motion, The effects of blending, and temperature, on the proportion of rings undergoing oscillatory motion are analyzed.
Resumo:
0Nuclear magnetic resonance (n.m.r.) imaging was used to study the ingress of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). The study offers strong evidence that the diffusion is Fickian in nature. The diffusion coefficient, D, obtained by fitting the underlying diffusion profile, attainable from the images, according to the equation for Fickian diffusion, is 1.5 x 10(-11) m(2) s(-1), which is in good correlation with the value of 2.1 x 10(-11) m(2) s(-1), obtained from mass uptake measurements. Additionally, from the T-2-weighted images, Superimposed features observed in addition to the underlying Fickian diffusion profiles were shown to have a longer spin-spin relaxation time, T-2. This Suggests the presence of two types of water within the polymer matrix; a less mobile phase of absorbed water that is interacting strongly with the polymer matrix and a more mobile phase of absorbed water residing within the cracks observed in the environmental scanning electron micrograph. (C) 1997 Elsevier Science Ltd.
Resumo:
A comprehensive study was conducted on mesoporous MCM-41. Spectroscopic examinations demonstrated that three types of silanol groups, i.e., single, (SiO)(3)Si-OH, hydrogen-bonded, (SiO)(3)Si-OH-OH-Si(SiO)(3), and geminal, (SiO)(2)Si(OH)(2), can be observed. The number of silanol groups/nm(2), alpha(OH), as determined by NMR, varies between 2.5 and 3.0 depending on the template-removal methods. All these silanol groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol(-1), respectively. However, only free silanol groups (involving single and geminal silanols) are highly accessible to the silylating agent, chlorotrimethylsilane. Silylation can modify both the physical and chemical properties of MCM-41.
Resumo:
The reactions between novolac resins and hexamethylenetetramine (HMTA) which occur on curing have been studied by C-13 and N-15 high-resolution n.m.r. in both solution and the solid state. Strong evidence for the existence of many curing intermediates is obtained. New curing intermediates are reported along with experimental data to support previously postulated intermediates. The initial curing reactions between novolac and HMTA produce various substituted benzoxazines and benzylamines. Thermal decomposition/oxidation and further reactions of these initial intermediates generate methylene linkages between phenolic rings for chain extension and cross-linking. Among the three kinds of methylene linkages, the para-para methylene linkages are formed at relatively lower temperatures. Various imine, amide and imide side-products also concurrently appear during the process. The initial amount of HMTA plays a critical role in the curing reactivity and chemical structures of the cured resins. The lower the amount of HMTA, the lower the temperature at which curing occurs, and the lower the amount of the nitrogen-containing side-products in the finally cured resins. The ortho-linked intermediates are relatively stable, and can remain in the cured resins up to higher temperatures. The study provides an extensive description of the curing reactions of novolac resins. (C) 1997 Elsevier Science Ltd.
Resumo:
In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and Fast-mediated CTL apoptosis. Blocking CD8 binding using (alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, Fast expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.
Resumo:
The effect of eutectic modification by strontium on nucleation and growth of the eutectic in hypoeutectic Al-Si foundry alloys has been investigated by electron back-scattering diffraction (EBSD) mapping. Specimens were prepared from three hypoeutectic AlSi base alloys with 5, 7 and 10 mass%Si and with different strontium contents up to 740 ppm for modification of eutectic silicon. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites? the growth mode of the eutectic could be determined. The mapping results indicate that the eutectic grew from the primary phase in unmodified alloys. When the eutectic was modified by strontium, eutectic grains nucleated separately from the primary dendrites. However, in alloys with high strontium levels, the eutectic again grew from the primary phase. These observed effects of strontium additions on the eutectic solidification mode are independent of silicon content in the range between 5 and 10 mass%Si.