40 resultados para Actin Cytoskeleton


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl- channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney ( OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In contrast to the well-established relationship between cadherins and the actin cytoskeleton, the potential link between cadherins and microtubules (MTs) has been less extensively investigated. We now identify a pool of MTs that extend radially into cell-cell contacts and are inhibited by manoeuvres that block the dynamic activity of MT plus-ends (e.g. in the presence of low concentrations of nocodazole and following expression of a CLIP-170 mutant). Blocking dynamic MTs perturbed the ability of cells to concentrate and accumulate E-cadherin at cell-cell contacts, as assessed both by quantitative immunofluorescence microscopy and fluorescence recovery after photobleaching (FRAP) analysis, but did not affect either transport of E-cadherin to the plasma membrane or the amount of E-cadherin expressed at the cell surface. This indicated that dynamic MTs allow cells to concentrate E-cadherin at cell-cell contacts by regulating the regional distribution of E-cadherin once it reaches the cell surface. Importantly, dynamic MTs were necessary for myosin II to accumulate and be activated at cadherin adhesive contacts, a mechanism that supports the focal accumulation of E-cadherin. We propose that this population of MTs represents a novel form of cadherin-MT cooperation, where cadherin adhesions recruit dynamic MTs that, in turn, support the local concentration of cadherin molecules by regulating myosin II activity at cell-cell contacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. The growth of solid tumors depends on establishing blood supply; thus, inhibiting tumor angiogenesis has been a long-term goal in cancer therapy. The SOX18 transcription factor is a key regulator of murine and human blood vessel formation. Methods: We established allograft melanoma tumors in wild-type mice, Sox18-null mice, and mice expressing a dominant-negative form of Sox18 (Sox18RaOp) (n = 4 per group) and measured tumor growth and microvessel density by immunohistochemical analysis with antibodies to the endothelial marker CD31 and the pericyte marker NG2. We also assessed the affects of disrupted SOX18 function on MCF-7 human breast cancer and human umbilical vein endothelial cell (HUVEC) proliferation by measuring BrdU incorporation and by MTS assay, cell migration using Boyden chamber assay, and capillary tube formation in vitro. All statistical tests were two-sided. Results: Allograft tumors in Sox18-null and Sox18RaOp mice grew more slowly than those in wild-type mice (tumor volume at day 14, Sox18 null, mean = 486 mm(3), 95% confidence interval [CI] = 345 mm(3) to 627 mm(3), p = .004; Sox18RaOp, mean = 233 mm(3), 95% CI = 73 mm(3) to 119 mm(3), p < .001; versus wild-type, mean = 817 mm(3), 95% CI = 643 mm(3) to 1001 mm(3)) and had fewer CD31- and NG2-expressing vessels. Expression of dominant-negative Sox18 reduced the proliferation of MCF-7 cells (BrdU incorporation: MCF-7(Ra) = 20%, 95% CI = 15% to 25% versus MCF-7 = 41%, 95% CI = 35% to 45%; P = .013) and HUVECs (optical density at 490 nm, empty vector, mean = 0.46 versus SOX18 mean = 0.29; difference = 0.17, 95% CI = 0.14 to 0.19; P = .001) compared with control subjects. Overexpression of wild-type SOX18 promoted capillary tube formation of HUVECs in vitro, whereas expression of dominant-negative SOX18 impaired tube formation of HUVECs and the migration of MCF-7 cells via the disruption of the actin cytoskeleton. Conclusions: SOX18 is a potential target for antiangiogenic therapy of human cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms underlying the swelling of frog red blood cells (RBC), induced by Pacific (P-CTX-1) and Caribbean (C-CTX-1) ciguatoxins (CTXs), were investigated by measuring the length, width and surface of their elliptic shape. P-CTX-1 (0.5 to 5 nM) and C-CTX-1 (1 mu M) induced RBC swelling within 60 min. The CTXs-induced RBC swelling was blocked by apamin (1 mu M) and by Sr2+ (1 mu M). P-CTX-1-induced RBC swelling was prevented and inhibited by H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one(27 mu M), an inhibitor Of Soluble guanylate cyclase (sGC), and NOS blockade by NG methyl-L-arginine (L-NMA; 10 mu M). Cytochalasin D (cytD, 10 mu M) increased RBC surface and mimicked CTX effect but did not prevent the P-CTX-1-induced L-NMA-sensitive extra increase. Calculations revealed that P-CTX-1 and cytD increase RBC total surface envelop and volume. These data strongly suggest that the molecular mechanisms underlying CTXs-induced RBC swelling involve the NO pathway by an activation of the inducible NOS, leading to sGC activation which modulates intracellular cGMP and regulates L-type Ca2+ channels. The resulting increase in intracellular Ca2+ content, in turn, disrupts the actin cytoskeleton, which causes a water influx and triggers a Ca2+-activated K+ current through SK2 isoform channels. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report that phosphoinositol-binding sorting nexin 5 ( SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, alpha-catenin has been best understood as an important cytoplasmic component of the classical cadherin complex responsible for cell-cell adhesion. By virtue of its capacity to bind F-actin, alpha-catenin was commonly envisaged to support cadherin function by coupling the adhesion receptor to the actin cytoskeleton. But is alpha-catenin solely the cadherin's handmaiden? A range of recent developments suggest, instead, that its biological activity is much more complex than previously appreciated. Evidence from cellular systems and model organisms demonstrates a clear, often dramatic, role for alpha-catenin in tissue organization and morphogenesis. The morphogenetic impact of alpha-catenin reflects its capacity to mediate functional cooperation between cadherins and the actin cytoskeleton, but is not confined to this. alpha-Catenin has a role in regulating cell proliferation and cadherin-independent pools of alpha-catenin may contribute to its functional impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TSLC1 (tumor suppressor in lung cancer-1, IGSF4) encodes a member of the immunoglobulin superfamily molecules, which is involved in cell-cell adhesion. TSLC1 is connected to the actin cytoskeleton by DAL-1 (differentially expressed in adenocarcinoma of the lung-1, EPB41L3) and it directly associates with MPP3, one of the human homologues of a Drosophila tumor suppressor gene, Discs large. Recent data suggest that aberrant promoter methylation is important for TSLC1 inactivation in lung carcinomas. However, little is known about the other two genes in this cascade, DAL-1 and MPP3. Thus, we investigated the expression and methylation patterns of these genes in lung cancer cell lines, primary lung carcinomas and nonmalignant lung tissue samples. By reverse transcription-polymerase chain reaction, loss of TSLC1 expression was observed in seven of 16 (44%) non-small-cell lung cancer (NSCLC) cell lines and in one of 11 (9%) small-cell lung cancer (SCLC) cell lines, while loss of DAL- 1 expression was seen in 14 of 16 (87%) NSCLC cell lines and in four of 11 (36%) SCLC cell lines. By contrast, MPP3 expression was found in all tumor cell lines analysed. Similar results were obtained by microarray analysis. TSLC1 methylation was seen in 13 of 39 (33%) NSC LC cell lines, in one of 11 (9%) SCLC cell lines and in 100 of 268 (37%) primary NSCLCs. DAL-1 methylation was observed in 17 of 39 (44%) NSCLC cell lines, in three of 11 (27%) SCLC cell lines and in 147 of 268 (55%) primary NSCLCs. In tumors of NSCLC patients with stage II-III disease, DAL-1 methylation was seen at a statistically significant higher frequency compared to tumors of patients with stage I disease. A significant correlation between loss of expression and methylation of the genes in lung cancer cell lines was found. Overall, 65% of primary NSCLCs had either TSLC1 or DAL-1 methylated. Methylation of one of these genes was detected in 59% of NSCLC cell lines; however, in SCLC cell lines, methylation was much less frequently observed. The majority of nonmalignant lung tissue samples was not TSLC1 and DAL-1 methylated. Re-expression of TSLC1 and DAL-1 was seen after treatment of lung cancer cell lines with 5-aza-2$-deoxy-cytidine. Our results suggest that methylation of TSLC1 and/or DAL-1, leading to loss of their expression, is an important event in the pathogenesis of NSCLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim-/- cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic alcohol abuse causes neurotoxicity and the development of tolerance and dependence. At the molecular level, however, knowledge about mechanisms underlying alcoholism remains limited. In this study we examined the superior frontal cortex, one of the most vulnerable brain regions, of alcoholics and of age- and gender-matched control subjects by means of antibody microarrays and Western blot analyses, and identified an up-regulation of beta-catenin level in the superior frontal cortex of alcoholics. Beta-catenin is the orthologue of the Drosophila armadillo segment polarity gene and a down stream component of the Wnt and Akt signaling pathway. Beta-catenin was identified as a cell adhesion molecule of the cadherin family which binds to the actin cytoskeleton. Genetic and biochemical analyses also found that beta-catenin can be translocated from the cytoplasm to the nucleus and acts as a transcription factor. In addition, electron microscopy performed on rat brain tissue sections has localized the beta-catenin and cadherin complexes to the synapses where they border the active zone. Because of the multi-functional role of beta-catenin in the nervous system, this study provides the premise for further investigation of mechanisms underlying the up-regulation of beta-catenin in alcoholism, which may have considerable pathogenic and therapeutic relevance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smooth muscle cell (SMC) phenotypic modulation from the mature ’contractile’ to a less differentiated ’synthetic’ phenotype involves not only altered expression but also a reorganisation of contractile and cytoskeletal proteins. Objective: To investigate the role of RhoA, a known regulator of the actin cytoskeleton, in SMC phenotypic regulation. Methods: Rho transcription (RT-PCR), expression (Western analysis) and activation (membrane translocation or Rho ’pull-down’ assay) was investigated in cultured rabbit aortic SMC during phenotypic modulation, and under the influence of known SM-regulatory proteins (thrombin, heparin and TGF- β). Rho’s effect on cell morphology was examined by transient transfection of ’synthetic’ state SMC with either constitutively active Rho (Val14RhoA) or its inhibitor, C3 transferase. Results: RhoA transcription was elevated in the first 3 days of primary culture, and protein expression peaked at 2 days post-confluence when SMC return to a more ’contractile’ state. However, RhoA showed augmented activation at three time-points in primary culture: the transition point when SMCs enter logarithmic growth and are highly motile, upon reaching quiescence, and when they return to a more ’contractile’ state. Thrombin, heparin and TGF-β activated RhoA in ’synthetic’ state SMCs. Transfection with Val14RhoA caused a dramatic decrease in SMC size and a reorganization of cytoskeletal proteins, reminiscent of the ’contractile’ phenotype. Specific inhibition of endogenous Rho by C3 transferase resulted in an almost complete loss of contractile proteins. Conclusion: These data indicate that Rho is an important determining factor of SMC functional state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the hypothesis that filamentous actin associated with the complex cytoskeleton of the kangaroo sperm head and tail may be contributing to lack of plasma membrane plasticity and a consequent loss of membrane integrity during cryopreservation. In the first study, the distribution of G and F actin within Eastern Grey Kangaroo (EGK, Macropus giganteus) cauda epididymidal spermatozoa was successfully detected using DNAse-FITC and a monoclonal F-actin antibody (ab205, Abcam), respectively. G-actin staining was most intense in the acrosome but was also observed with less intensity over the nucleus and mid-piece. F-actin was located in the sperm nucleus but was not discernable in the acrosome or sperm tail. To investigate whether cytochalasin D (a known F-actin depolymerising agent) was capable of improving the osmotic tolerance of EGK cauda epididymal spermatozoa, sperm were incubated in hypo-osmotic media (61 and 104 mOsm) containing a range of cytochalasin D concentrations (0-200 mu M). Cytochalasin D had no beneficial effect on plasma membrane integrity of sperm incubated in hypo-osmotic media. However, when EGK cauda epididymidal sperm were incubated in isosmotic media, there was a progressive loss of sperm motility with increasing cytochalasin D concentration. The results of this study indicated that the F-actin distribution in cauda epididymidal spermatozoa of the EGK was surprisingly different from that of the Tammar Wallaby (M. eugenii) and that cytochalasin-D does not appear to improve the tolerance of EGK cauda epididymidal sperm to osmotically induced injury.