42 resultados para Acoustic Startle Reflex
Resumo:
The human startle response is a sensitive, noninvasive measure of central nervous system activity that is Currently used in a wide variety of research and clinical settings. In this article, we raise methodological issues and present recommendations for optimal methods of startle blink electromyographic (EMG) response elicitation, recording, quantification, and reporting. It is hoped that this report Will foster more methodological validity and reliability in research using the startle response, Lis well Lis increase the detail with which relevant methodology is reported in publications using this measure.
Resumo:
Prepulse inhibition and facilitation of the blink reflex are said to reflect different responses elicited by the lead stimulus, transient detection and orienting response respectively. Two experiments investigated the effects of trial repetition and lead stimulus change on blink modification. It was hypothesized that these manipulations will affect orienting and thus blink facilitation to a greater extent than they will affect transient detection and thus blink inhibition. In Experiment 1 (N = 64), subjects were trained with a sequence of 12 lead stimulus and 12 blink stimulus alone presentations, and 24 lead stimulus-blink stimulus pairings. Lead interval was 120 ms for 12 of the trials and 2000 ms for the other 12. For half the subjects this sequence was followed by a change in pitch of the lead stimulus. In Experiment 2 (N = 64), subjects were trained with a sequence of 36 blink alone stimuli and 36 lead stimulus-blink stimulus pairings. The lead interval was 120 ms for half the subjects and 2000 ms for the other half. The pitch of the lead stimulus on prestimulus trials 31-33 was changed for half the subjects in each group. In both experiments, the amount of blink inhibition decreased during training whereas the amount of blink facilitation remained unchanged. Lead stimulus change had no effect on blink modification in either experiment although it resulted in enhanced skin conductance responses and greater heart rate deceleration in Experiment 2. The present results are not consistent with the notion that blink facilitation is linked to orienting whereas blink inhibition reflects a transient detection mechanism. (C) 1998 Elsevier Science B.V.
Resumo:
Attentional accounts of blink facilitation during Pavlovian conditioning predict enhanced reflexes if reflex and unconditional stimuli (US) are from the same modality. Emotional accounts emphasize the importance of US intensity. In Experiment 1, we crossed US modality (tone vs, shock) and intensity in a 2 X 2 between-subjects design. US intensity but not US modality affected blink facilitation. Tn Experiment 2, we demonstrated that the results from Experiment 1 were not due to the motor task requirements employed. In Experiment 3, we used a within-subjects design to investigate the effects of US modality and intensity. Contrary to predictions derived from an attentional account, blink facilitation was larger during conditional stimuli that preceded shock than during those that preceded tones. The present results are not consistent with an attentional account of blink facilitation during Pavlovian conditioning in humans.
Resumo:
Previous research using punctuate reaction time and counting tasks has found that the startle eyeblink reflex is sensitive to attentional demands. The present experiment explored whether startle eyeblink is also modulated during a complex continuous task and is sensitive to different levels of mental workload. Participants (N=14) performed a visual horizontal tracking task either alone (single-task condition) or in combination with a visual gauge monitoring task (multiple-task condition) for three minutes. On some task trials, the startle eyeblink reflex was elicited by a noise burst. Results showed that startle eyeblink was attenuated during both tasks and that the attenuation was greater during the multiple-task condition than during the single-task condition. Subjective ratings, endogenous eyeblink rate, heart period, and heart period variability provided convergent validity of the workload manipulations. The findings suggest that the startle eyeblink is sensitive to the workload demands associated with a continuous visual task. The application of startle eyeblink modulation as a workload metric and the possibility that it may be diagnostic of workload demands in different stimulus modalities is discussed.
Resumo:
Previous studies found larger attentional modulation of acoustic blinks during task-relevant than during task-irrelevant acoustic or visual, but not tactile, lead stimuli. Moreover, blink modulation was larger overall during acoustic lead stimuli. The present experiment investigated whether these results reflect modality specificity of attentional blink modulation or effects of continuous stimulation. Participants performed a discrimination and counting task with acoustic, visual, or tactile lead stimuli. Stimuli were presented Sustained or consisted of two short discrete stimuli. The sustained condition replicated previous results. In the discrete condition, blinks were larger during task-relevant than during task-irrelevant stimuli in all groups regardless of lead stimulus modality. Thus, previous results that seemed consistent with modality-specific accounts of attentional blink modulation reflect effects of continuous stimulus input.
Resumo:
Prepulse inhibition of the blink reflex is widely applied to investigate information processing deficits in schizophrenia and other psychiatric patient groups. The present experiment investigated the hypothesis that prepulse inhibition reflects a transient process that protects preattentive processing of the prepulse. Participants were presented with pairs of blinkeliciting noises, some preceded by a prepulse at a variable stimulus onset asynchrony (SOA), and were asked to rate the intensity of the second noise relative to the first. Inhibition of blink amplitude was greater for a 110-dB (A) noise than for a 95-dB(A) noise with a 120-ms SOA, whereas there was no difference with a 30-ms SOA. The perceived intensity was also lower for the 110-dB(A) noise than for the 95-dB(A) noise with the 120-ms SOA, but not with the 30-ms SOA. The parallel results support a relationship between prepulse inhibition of response amplitude and perceived intensity. However, the prepulse did not reduce intensity ratings relative to control trials in some conditions, suggesting that prepulse inhibition is not always associated with an attenuation of the perceived impact of the blink-eliciting stimulus.
Resumo:
Rat experiments have shown that prenatal Vitamin D deficiency leads to altered neonatal brain morphology, cell density and neurotrophin expression. In the current study we examined the hypothesis that Vitamin D deficiency during early development alters adult behaviour even when there is an intervening period in which the animal receives normal Vitamin D in later development. Rats were conceived and born to Vitamin D deficient dams (Birth); conceived, born and weaned from Vitamin D deficient dams (Weaning); or deficient in Vitamin D from conception to 10 weeks of age (Life). Litters were standardized to three males and three females per litter. All rat offspring were rendered normocalcaemic with calcium supplemented water (2 mM) after weaning. Control animals were born to mothers fed a normal diet but subject to similar litter size and calcium supplementation. At 10 weeks all animals were tested on the holeboard test, elevated plus maze test, social interaction observation, acoustic startle response test, prepulse inhibition of the acoustic startle response and a forced swim test. Early Vitamin D deficiency (Birth group) enhanced locomotion in the holeboard test and increased activity in the elevated plus maze. Thus, transient prenatal Vitamin D deficiency induces hyperlocomotion in adulthood, without severe motor abnormalities. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Vitamin D (calcitriol) is a nuclear transcription regulator acting via a nuclear hormone receptor (VDR). In addition to its role in the regulation of calcium and phosphate horneostasis and in bone formation, Vitamin D is also thought to be involved in brain function. The aim of this study was to behaviourally phenotype VDR knockout mice. We characterized the behaviour of VDR null mutant mice and wildtype littermate controls by subjecting them to a range of tests including a primary behavioural screen (using the SHIRPA protocol), rotarod, gait analysis, Y-maze, marble burying test, bedding test, holeboard test, elevated plus maze, open field test and prepulse inhibition of the acoustic startle response. There were no effects of genotype on most of the scores from the SHIRPA protocol except that VDR -/- mice had alopecia, were shorter and weighed less than VDR +/+ mice. VDR -/- mice had a shorter gait as well as impairments on the rotarod, in the bedding test and impaired habituation in both the open field and on the acoustic startle response. The VDR -/- mice had normal acoustic startle responses but had impaired PPI at long (256 ms) but not short (64 ms) prepulse to pulse intervals. The VDR -/- mice were less active in the open field and buried fewer marbles in the marble burying test. However, there were no differences in the time spent on the open arms of the elevated plus maze or in working memory as assessed by repeat arm entries on the Y-maze. Therefore, it appears that VDR -/- mice have muscular and motor impairments that significantly affects locomotor behaviour but seemingly no impairments in cognition as indicated by exploration, working memory or anxiety. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In two experiments we investigated the effect of generalized orienting induced by changing the modality of the lead stimulus on the modulation of blink reflexes elicited by acoustic stimuli. In Experiment 1 (n = 32), participants were presented with acoustic or visual change stimuli after habituation training with tactile lead stimuli. In Experiment 2 (n = 64), modality of the lead stimulus (acoustic vs. visual) was crossed with experimental condition (change vs. no change). Lead stimulus change resulted in increased electrodermal orienting in both experiments. Blink latency shortening and blink magnitude facilitation increased from habituation to change trials regardless of whether the change stimulus was presented in the same or in a different modality as the reflex-eliciting stimulus. These results are not consistent with modality-specific accounts of attentional startle modulation.
Resumo:
Two experiments investigated the effects of the sensory modality of the lead and of the blink-eliciting stimulus during lead stimulus modality change on blink modulation at lead intervals of 2500 and 3500 ins. Participants were presented with acoustic, visual, or tactile change stimuli after habituation training with lead stimuli from the same or a different sensory modality. In Experiment 1, latency and magnitude of the acoustic blink were facilitated during a change to acoustic or visual lead stimuli, but not during a change to tactile lead stimuli. After habituation to acoustic lead stimuli, blink magnitude was smaller during tactile change stimuli than during habituation stimuli. The latter finding was replicated in Experiment 2 in which blink was elicited by electrical stimulation of the trigeminal nerve. The consistency of the findings across different combinations of lead stimulus and blink-eliciting stimulus modalities does not support a modality-specific account of attentional blink modulation. Rather, blink modulation during generalized orienting reflects modality non-specific processes, although modulation may not always be found during tactile lead stimuli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The present research investigated attentional blink startle modulation at lead intervals of 60, 240 and 3500 ms. Letters printed in Gothic or standard fonts, which differed in rated interest, but not valence, served as lead stimuli. Experiment I established that identifying letters as vowels/consonants took longer than reading the letters and that performance in both tasks was slower if letters were printed in Gothic font. In Experiment 2, acoustic blink eliciting stimuli were presented 60, 240 and 3500 ms after onset of the letters in Gothic and in standard font and during intertrial intervals. Half the participants (Group Task) were asked to identify the letters as vowels/consonants whereas the others (Group No-Task) did not perform a task. Relative to control responses, blinks during letters were facilitated at 60 and 3500 ms lead intervals and inhibited at the 240 ms lead interval for both conditions in Group Task. Differences in blink modulation across lead intervals were found in Group No-Task only during Gothic letters with blinks at the 3500 ms lead interval facilitated relative to control blinks. The present results confirm previous findings indicating that attentional processes can modulate startle at very short lead intervals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Four experiments investigated the attentional modulation of acoustic blinks during continuous spatial tracking tasks. Experiment 1 found blink magnitude inhibition in a visual tracking task. Experiment 2 replicated this finding and also found blink latency slowing. Experiment 3 varied the difficulty of the task and found larger blink inhibition in the easy condition. Blink latency slowing did not differ and was significant at both difficulty levels. Experiment 4 employed less difficult visual and acoustic tracking tasks at two levels of task load. Blink magnitude inhibition during the visual and facilitation during the acoustic task was significant during high load in both modality groups. Blink latency was slowed in all visual task conditions and shortened in the difficult acoustic task. These results indicate that attentional blink modulation in a continuous spatial tracking task is modality specific.
Resumo:
We used the startle eyeblink modification paradigm to investigate whether clinically anxious children, like high trait-anxious adults, display a bias in favour of threat words compared to neutral words. The present study included 16 clinically anxious children whose diagnostic status was determined using the parent version of a semistructured diagnostic interview as part of a larger childhood anxiety study. The children were presented with threat and neutral words fur 6 s each. A startle-eliciting auditory stimulus - a 100 dBA burst of white noise of 50 ms duration - was presented during the words at lead intervals of 60, 120, 240, or 3500 ms and during intertrial intervals. The overall pattern of startle eyeblink modification indicated inhibition at the 120 and 240 ms lead intervals and facilitation at the 3500 ms lead interval. startle-latency shortening during threat words at the :60 ms lead interval was larger than at other intervals, whereas there was no difference during neutral words. This result reflects an anxiety-related bias in favour of threat words occurring at a very early - and possibly preattentive stage - of information processing.
Resumo:
Two experiments were conducted to assess simultaneously the effects of attentional and emotional processes on startle eyeblink modulation. In each experiment, participants were presented with a pleasant and an unpleasant picture. Half the participants were asked to attend to the pleasant picture and to ignore the unpleasant picture, whereas the reverse was the case for the other participants. Startle probes were presented at 3500 and 4500 ins after stimulus onset in Experiment I and at 250, 750, and 4450 ms after stimulus onset and 950 ms after stimulus offset in Experiment 2. Attentional processing affected startle eyeblink modulation and electrodermal responses in both experiments, However, effects of picture valence on startle eyeblink modulation were found only in Experiment 2. The results confirm the utility of startle eyeblink modulation as an index of attentional and emotional processing. They also illustrate that procedural characteristics, such as the nature of the lead intervals and how attention and emotion are operationalized, can determine whether emotional or attentional processes will be reflected in startle eyeblink.
Resumo:
Rise time and duration are two parametric characteristics of the eliciting stimulus frequently used to differentiate among psychophysiological reflexes. The present research varied the duration (study 1) and rise time (study 2) of an intense acoustic stimulus to dissociate cardiac defense and cardiac startle using the eyeblink response as the external criterion of startle. In each study, 100 participants were presented with five white noise stimuli of 105 dB under one of five duration (50, 100, 250, 500, and 1000 ms) or rise time (0, 24, 48, 96, and 240 ms) conditions. Cardiac defense was affected by stimulus duration, present only in the 500- and 1000-ms conditions, but not by stimulus rise time, present in all rise time conditions. Rise time affected blink startle, but did not selectively alter the short latency accelerative component of the heart rate response, thus questioning whether it reflects startle.