120 resultados para Accelerometer prediction equations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Body mass index (BMI) is frequently related to percentage body fat. Nevertheless, the relationship between BMI and fat mass/height(2) (FM/H-2), theoretically, should be more appropriate. Aim: This study seeks to evaluate the relationship between BMI and both percentage body fat and FM/H-2 in a group of Chinese Australian females. Subjects and methods: Forty subjects took part in the study and all were Chinese females resident in Brisbane, Australia. Body mass index was calculated from height and weight. Percentage body fat and fat mass were calculated from measurements of total body water. Results: The use of BMI to predict FM/H-2 accounted for double the variance of that found when BMI was used to predict percentage body fat. Conclusions: As a consequence, it is possible that the use of BMI to predict FM/H-2 and not percentage body fat in the first instance may prove to be more useful in a number of adult populations. Nevertheless, with a relatively small sample size it is difficult, if not impossible, to test the developed equations on a validation group and further investigation into the findings described in this paper needs to be undertaken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University; on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and Larson (1998). We explore the predictive power of a differential multi-mode version of the pom-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (1999), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies in the last 60 years have investigated the relationship between land slope and soil erosion rates. However, relatively few of these have investigated slope gradient responses: ( a) for steep slopes, (b) for specific erosion processes, and ( c) as a function of soil properties. Simulated rainfall was applied in the laboratory on 16 soils and 16 overburdens at 100 mm/h to 3 replicates of unconsolidated flume plots 3 m long by 0.8 m wide and 0.15 m deep at slopes of 20, 5, 10, 15, and 30% slope in that order. Sediment delivery at each slope was measured to determine the relationship between slope steepness and erosion rate. Data from this study were evaluated alongside data and existing slope adjustment functions from more than 55 other studies from the literature. Data and the literature strongly support a logistic slope adjustment function of the form S = A + B/[1 + exp (C - D sin theta)] where S is the slope adjustment factor and A, B, C, and D are coefficients that depend on the dominant detachment and transport processes. Average coefficient values when interill-only processes are active are A - 1.50, B 6.51, C 0.94, and D 5.30 (r(2) = 0.99). When rill erosion is also potentially active, the average slope response is greater and coefficient values are A - 1.12, B 16.05, C 2.61, and D 8.32 (r(2) = 0.93). The interill-only function predicts increases in sediment delivery rates from 5 to 30% slope that are approximately double the predictions based on existing published interill functions. The rill + interill function is similar to a previously reported value. The above relationships represent a mean slope response for all soils, yet the response of individual soils varied substantially from a 2.5-fold to a 50-fold increase over the range of slopes studied. The magnitude of the slope response was found to be inversely related ( log - log linear) to the dispersed silt and clay content of the soil, and 3 slope adjustment equations are proposed that provide a better estimate of slope response when this soil property is known. Evaluation of the slope adjustment equations proposed in this paper using independent datasets showed that the new equations can improve soil erosion predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth behaviour of the vibrational wear phenomenon known as rail corrugation is investigated analytically and numerically using mathematical models. A simplified feedback model for wear-type rail corrugation that includes a wheel pass time delay is developed with an aim to analytically distil the most critical interaction occurring between the wheel/rail structural dynamics, rolling contact mechanics and rail wear. To this end, a stability analysis on the complete system is performed to determine the growth of wear-type rail corrugations over multiple wheelset passages. This analysis indicates that although the dynamical behaviour of the system is stable for each wheel passage, over multiple wheelset passages, the growth of wear-type corrugations is shown to be the result of instability due to feedback interaction between the three primary components of the model. The corrugations are shown analytically to grow for all realistic railway parameters. From this analysis an analytical expression for the exponential growth rate of corrugations in terms of known parameters is developed. This convenient expression is used to perform a sensitivity analysis to identify critical parameters that most affect corrugation growth. The analytical predictions are shown to compare well with results from a benchmarked time-domain finite element model. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In paediatric clinical practice treatment is often adjusted in relation to body size, for example the calculation of pharmacological and dialysis dosages. In addition to use of body weight, for some purposes total body water (TBW) and surface area are estimated from anthropometry using equations developed several decades previously. Whether such equations remain valid in contemporary populations is not known. Methods: Total body water was measured using deuterium dilution in 672 subjects (265 infants aged < 1 year; 407 children and adolescents aged 1-19 years) during the period 1990-2003. TBW was predicted (a) using published equations, and (b) directly from data on age, sex, weight, and height. Results: Previously published equations, based on data obtained before 1970, significantly overestimated TBW, with average biases ranging from 4% to 11%. For all equations, the overestimation of TBW was greatest in infancy. New equations were generated. The best equation, incorporating log weight, log height, age, and sex, had a standard error of the estimate of 7.8%. Conclusions: Secular trends in the nutritional status of infants and children are altering the relation between age or weight and TBW. Equations developed in previous decades significantly overestimate TBW in all age groups, especially infancy; however, the relation between TBW and weight may continue to change. This scenario is predicted to apply more generally to many aspects of paediatric clinical practice in which dosages are calculated on the basis of anthropometric data collected in previous decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of height or length is essential in the assessment of nutritional status. In some conditions, for example cerebral palsy (CP), such measurements may be difficult or impossible. Proxy measurements such as knee height have been used to predict height in such cases. We have evaluated two equations in the literature that predict stature from knee height in a group of 17 children with CP and 20 non-disabled children. The two equations performed well on average in the non-disabled children, with the mean predicted height being within 1% of the mean measured height. Nevertheless, the limits of agreement were relatively large. This was also the case for the children with CP. Thus the equations may be accurate at the group level; however they may lead to unacceptable error at the individual level. © 2006 Informa UK Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed. Method: Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km(.)h(-1), and 800 in at 6.5 km(.)h(-1) on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI. and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, brisk 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined. Results: Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI. and 0.99 with individual calibration for a specific MTI. The SEE (mean +/- SD) was 0.58 +/- 0.30 km(.)h(-1) without individual calibration, 0.19 +/- 0.09 km h(-1) with individual calibration for the average MTI monitor, and 0.16 +/- 0.08 km(.)h(-1) with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the brisk 3-km walk was 0.06 +/- 0.25 km(.)h(-1) using individual calibration and 0.28 +/- 0.63 km(.)h(-1) without individual calibration (for specific accelerometers). Conclusion: MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the phrase 'genomic medicine' has increasingly been used to describe a new development in medicine that holds great promise for human health. This new approach to health care uses the knowledge of an individual's genetic make-up to identify those that are at a higher risk of developing certain diseases and to intervene at an earlier stage to prevent these diseases. Identifying genes that are involved in disease aetiology will provide researchers with tools to develop better treatments and cures. A major role within this field is attributed to 'predictive genomic medicine', which proposes screening healthy individuals to identify those who carry alleles that increase their susceptibility to common diseases, such as cancers and heart disease. Physicians could then intervene even before the disease manifests and advise individuals with a higher genetic risk to change their behaviour - for instance, to exercise or to eat a healthier diet - or offer drugs or other medical treatment to reduce their chances of developing these diseases. These promises have fallen on fertile ground among politicians, health-care providers and the general public, particularly in light of the increasing costs of health care in developed societies. Various countries have established databases on the DNA and health information of whole populations as a first step towards genomic medicine. Biomedical research has also identified a large number of genes that could be used to predict someone's risk of developing a certain disorder. But it would be premature to assume that genomic medicine will soon become reality, as many problems remain to be solved. Our knowledge about most disease genes and their roles is far from sufficient to make reliable predictions about a patient’s risk of actually developing a disease. In addition, genomic medicine will create new political, social, ethical and economic challenges that will have to be addressed in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gaudin models based on the face-type elliptic quantum groups and the XYZ Gaudin models are studied. The Gaudin model Hamiltonians are constructed and are diagonalized by using the algebraic Bethe ansatz method. The corresponding face-type Knizhnik–Zamolodchikov equations and their solutions are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we extend the guiding function approach to show that there are periodic or bounded solutions for first order systems of ordinary differential equations of the form x1 =f(t,x), a.e. epsilon[a,b], where f satisfies the Caratheodory conditions. Our results generalize recent ones of Mawhin and Ward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The artificial dissipation effects in some solutions obtained with a Navier-Stokes flow solver are demonstrated. The solvers were used to calculate the flow of an artificially dissipative fluid, which is a fluid having dissipative properties which arise entirely from the solution method itself. This was done by setting the viscosity and heat conduction coefficients in the Navier-Stokes solvers to zero everywhere inside the flow, while at the same time applying the usual no-slip and thermal conducting boundary conditions at solid boundaries. An artificially dissipative flow solution is found where the dissipation depends entirely on the solver itself. If the difference between the solutions obtained with the viscosity and thermal conductivity set to zero and their correct values is small, it is clear that the artificial dissipation is dominating and the solutions are unreliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We clarify the extra signs appearing in the graded quantum Yang-Baxter reflection equations, when they are written in a matrix form. We find the boundary K-matrix for the Perk-Schultz six-vertex model, thus give a general solution to the graded reflection equation associated with it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.