44 resultados para ARTIFICIAL NEURAL-NETWORK
Resumo:
Nonlinear, non-stationary signals are commonly found in a variety of disciplines such as biology, medicine, geology and financial modeling. The complexity (e.g. nonlinearity and non-stationarity) of such signals and their low signal to noise ratios often make it a challenging task to use them in critical applications. In this paper we propose a new neural network based technique to address those problems. We show that a feed forward, multi-layered neural network can conveniently capture the states of a nonlinear system in its connection weight-space, after a process of supervised training. The performance of the proposed method is investigated via computer simulations.
Resumo:
This paper presented a novel approach to develop car following models using reactive agent techniques for mapping perceptions to actions. The results showed that the model outperformed the Gipps and Psychophysical family of car following models. The standing of this work is highlighted by its acceptance and publication in the proceedings of the International IEEE Conference on Intelligent Transportation Systems (ITS), which is now recognised as the premier international conference on ITS. The paper acceptance rate to this conference was 67 percent. The standing of this paper is also evidenced by its listing in international databases like Ei Inspec and IEEE Xplore. The paper is also listed in Google Scholar. Dr Dia co-authored this paper with his PhD student Sakda Panwai.
Resumo:
This paper presents a neural network based technique for the classification of segments of road images into cracks and normal images. The density and histogram features are extracted. The features are passed to a neural network for the classification of images into images with and without cracks. Once images are classified into cracks and non-cracks, they are passed to another neural network for the classification of a crack type after segmentation. Some experiments were conducted and promising results were obtained. The selected results and a comparative analysis are included in this paper.