32 resultados para ALVEOLAR MACROPHAGE PHAGOCYTOSIS
Resumo:
Neutrophils and macrophages were generated in vitro from mice that display either high or low tissue susceptibilities to Candida albicans infection and their ability to phagocytose and kill three isolates of the yeast with different virulence characteristics was evaluated. In the absence of opsonization, phagocytosis by BALB/c and CBA/CaH neutrophils was comparable, but the killing was very poor. Opsonization with normal serum slightly decreased phagocytosis, but it had markedly different effects on killing, either enhancing or inhibiting candidacidal activity, depending on the combination of yeast isolate and mouse strain. In contrast, BALB/c macrophages showed high levels of phagocytosis and killing of both unopsonized yeasts and opsonized yeasts; whereas killing of unopsonized yeasts by CBA/CaH macrophages was poor, it was markedly enhanced by opsonization.
Resumo:
Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macro phages and lal(-/-) pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal(-/-) genetic background under control of the 7.2-kb c-fins promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis.
Resumo:
Transcriptional regulatory networks govern cell differentiation and the cellular response to external stimuli. However, mammalian model systems have not yet been accessible for network analysis. Here, we present a genome-wide network analysis of the transcriptional regulation underlying the mouse macrophage response to bacterial lipopolysaccharide (LPS). Key to uncovering the network structure is our combination of time-series cap analysis of gene expression with in silico prediction of transcription factor binding sites. By integrating microarray and qPCR time-series expression data with a promoter analysis, we find dynamic subnetworks that describe how signaling pathways change dynamically during the progress of the macrophage LPS response, thus defining regulatory modules characteristic of the inflammatory response. In particular, our integrative analysis enabled us to suggest novel roles for the transcription factors ATF-3 and NRF-2 during the inflammatory response. We believe that our system approach presented here is applicable to understanding cellular differentiation in higher eukaryotes. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Anti-glomerular basement membrane (anti-GBM) disease represents the spectrum of disease attributable to circulating anti-GBM antibodies. While active anti-GBM disease in the absence of circulating anti-GBM antibodies has been described, it is considered rare with the use of current routinely available assays. We report four subjects with features consistent with active anti-GBM antibody disease without detectable antibodies by routinely available enzyme linked immunosorbent assay (ELISA) and immunoblot techniques. All were smokers who presented with diffuse alveolar haemorrhage, minimal renal involvement, and undetectable anti-GBM antibodies. Seronegative anti-GBM disease with predominant pulmonary involvement may be more common than previously appreciated and should be part of the differential diagnosis for otherwise unexplained diffuse alveolar haemorrhage. Renal biopsy with immunofluorescent studies should be considered in the diagnostic evaluation of such subjects, including those with idiopathic pulmonary haemosiderosis.