42 resultados para ADULT SOMATIC-CELLS
Resumo:
Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat.
Resumo:
Basic fibroblast growth factor (FGF2) stimulates proliferation of the globose basal cells, the neuron:ll precursor in the olfactory epithelium. The present study investigates the expression of basic fibroblast growth factor and fibroblast growth factor receptors in the adult olfactory epithelium. FGF2 immunoreactivity was expressed widely in the olfactory epithelium, with the highest density of immunoreactivity in the supporting cells. In contrast, most cells in the epithelium expressed FGF2 mRNA. Fibroblast growth factor receptor-1 (FGFr1) immunoreactivity was densest in the basal cell and neuronal layers of the olfactory epithelium and on the apical surface of supporting cells. In the lamina propria FGF2 immunoreactivity and mRNA were densest in cells close to the olfactory nerve bundles. FGFr1 immunoreactivity was heaviest on the olfactory ensheathing cells. Using reverse transcriptase-polymerase chain reaction analysis, the olfactory epithelium was shown to express only three receptor splice variants, including one (FGFr1c) with which basic fibroblast growth factor has high affinity. Other receptor splice variants were present in the lamina propria. Taken together, these observations indicate endogenous sources of FGF? within the olfactory epithelium and lamina propria and suggest autocrine and paracrine pathways via which FGF2 might regulate olfactory neurogenesis. The observation of only three receptor splice variants in the olfactory epithelium limits the members of the fibroblast growth factor family which could act in the olfactory epithelium. The widespread distribution of receptors suggests that fibroblast growth factors may have roles other than proliferation of globose basal cells. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.
Resumo:
Background: It has previously been suggested that CD4(+) T cells play a pivotal role in regulating the immune response to periodontal pathogens. The aim of the present study therefore was to determine delayed type hypersensitivity (DTH), spleen cell proliferation, serum and splenic anti-Porphyromonas gingivalis antibody levels, and lesion sizes following challenge with viable P. gingiualis in CD4-depleted BALB/c mice immunized with P. gingiualis outer membrane proteins (OMP). Methods: Four groups of BALB/c mice were used. Groups 1 and 2 were injected intraperitoneally (ip) with saline for 3 consecutive days and then weekly throughout the experiment. Groups 3 and 4 were injected ip with rat immunoglobulin and a monoclonal rat anti-mouse CD4 antibody, respectively. Two days later, group 1 mice were injected ip with saline only, while all the other groups were immunized ip with P. gingiualis OMP weekly for 3 weeks. One week later following the last immunization of OMP, 3 separate experiments were conducted to determine: 1) the DTH response to P. gingiualis OMP by measuring footpad swelling; 2) the levels of antibodies to P. gingiualis in serum samples and spleen cell cultures using an enzyme-linked immunosorbent assay, as well as spleen cell proliferation after stimulation with OMP; and 3) the lesion sizes after a subcutaneous challenge with viable P. gingiualis cells. Results: In CD4(+) T-cell-depleted mice (group 4), the DTH response and antigen-stimulated cell proliferation were significantly suppressed when compared to groups 2 and 3. Similarly, the levels of serum and splenic IgM, IgG, and all IgG subclass antibodies to P. gingiualis OMP were depressed. Delayed healing of P. gingivalis-induced lesions was also observed in the CD4(+) T-cell-depleted group. Conclusions: This study has shown that depletion of CD4(+) T cells prior to immunization with P. gingiualis OMP led to the suppression of both the humoral and cell-mediated immune response to this microorganism and that this was associated with delayed healing. These results suggest that the induction of the immune response to P. gingiualis is a CD4(+) T-cell-dependent mechanism and that CD4(+) T cells are important in the healing process.
Resumo:
The neurexins are a large family of neuronal cell-surface proteins believed to be involved in intercellular signalling and the formation of intercellular junctions. To begin to assess the role of these proteins in the olfactory bulb, we describe here the expression patterns of their transmembrane and secreted ligands, the neuroligins and neurexophilins, during both embryonic and postnatal development. In situ hybridisation showed that neuroligin 1 and 2 were expressed by second order mitral cells during early postnatal development but not in adults. The secreted ligand for a-neurexin, neurexophilin 1, was also expressed in the postnatal olfactory bulb. Neurexophilin 1 was detected in only periglomerular cells during the early postnatal period of glomerular formation but later was also expressed in mitral cells. These results suggest that neurexin-ligand interactions may be important for development and/or maturation of synaptic connections in the primary olfactory pathway.
Resumo:
Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons. the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice. primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from other studies indicating that mitral cells do not play a major role in the convergence and targeting of primary olfactory axons in the olfactory bulb. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Axonal regeneration of retinal ganglion cells (RGCs) into a normal or pre-degenerated peripheral nerve graft after an optic nerve pre-lesion was investigated. A pre-lesion performed 1-2 weeks before a second lesion has been shown to enhance axonal regeneration in peripheral nerves (PN) but not in optic nerves (ON) in mammals. The lack of such a beneficial pre-lesion effect may be due to the long delay (1-6 weeks) between the two lesions since RGCs and their axons degenerate rapidly 1-2 weeks following axotomy in adult rodents. The present study examined the effects of the proximal and distal ON pre-lesions with a shortened delay (0-8 days) on axonal regeneration of RGCs through a normal or pre-degenerated PN graft. The ON of adult hamsters was transected intraorbitallv at 2 mm. (proximal lesion) or intracranially at 7 mm (distal lesion) from the optic disc. The pre-lesioned ON was re-transected at 0.5 mm from the disc after 0, 1, 2, 4, or 8 days and a normal or a pre-degenerated PN graft was attached onto the ocular stump. The number of RGCs regenerating their injured axons into the PN graft was estimated by retrograde labeling with FluoroGold 4 weeks after grafting. The number of regenerating RGCs decreased significantly when the delay-time increased in animals with both the ON pre-lesions (proximal or distal) compared to control animals without an ON pre-lesion. The proximal ON pre-lesion significantly reduced the number of regenerating RGCs after a delay of 8 days in comparison with the distal lesion. However, this adverse effect can be overcome, to some degree, by a pre-degenerated PN graft applied 2, 4, or 8 days after the distal ON pre-lesion enhanced more RGCs to regenerate than the normal PN graft. Thus, in order to obtain the highest number of regenerating RGCs, a pre-degenerated PN should be grafted immediately after an ON lesion.
Resumo:
The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.
Resumo:
Eph receptor tyrosine kinases and ephrins regulate morphogenesis in the developing embryo where they effect adhesion and motility of interacting cells. Although scarcely expressed in adult tissues, Eph receptors and ephrins are overexpressed in a range of tumours. In malignant melanoma, increased Eph and ephrin expression levels correlate with metastatic progression. We have examined cellular and biochemical responses of EphA3-expressing melanoma cell lines and human epithelial kidney 293T cells to stimulation with polymeric ephrin-A5 in solution and with surfaces of defined ephrin-A5 densities. Within minutes, rapid reorganisation of the actin and myosin cytoskeleton occurs through activation of RhoA, leading to the retraction of cellular protrusions, membrane blebbing and detachment, but not apoptosis. These responses are inhibited by monomeric ephrin-A5, showing that receptor clustering is required for this EphA3 response. Furthermore, the adapter CrkII, which associates with tyrosine-phosphorylated EphA3 in vitro, is recruited in vivo to ephrin-A5-stimulated EphA3. Expression of an SH3-domain mutated CrkII ablates cell rounding, blebbing and detachment. Our results suggest that recruitment of CrkII and activation of Rho signalling are responsible for EphA3-mediated cell rounding, blebbing and de-adhesion, and that ephrin-A5-mediated receptor clustering and EphA3 tyrosine kinase activity are essential for this response.
Resumo:
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Paradoxically, while peripheral self-tolerance exists for constitutively presented somatic self Ag, self-peptide recognized in the context of MHC class II has been shown to sensitize T cells for subsequent activation. We have shown that MHC class II(+)CD86(+)CD40(-) DC, which can be generated from bone marrow in the presence of an NF-kappaB inhibitor, and which constitutively populate peripheral tissues and lymphoid organs in naive animals, can induce Ag-specific tolerance. In this study, we show that CD40(-) human monocyte-derived dendritic cells (DC), generated in the presence of an NF-kappaB inhibitor, signal phosphorylation of TCRzeta, but little proliferation or IFN-gamma in vitro. Proliferation is arrested in the G(1)/G(0) phase of the cell cycle. Surprisingly, responding T cells are neither anergic nor regulatory, but are sensitized for subsequent IFN-gamma production. The data indicate that signaling through NF-kappaB determines the capacity of DC to stimulate T cell proliferation. Functionally, NF-kappaB(-)CD40(-)class II+ DC may either tolerize or sensitize T cells. Thus, while CD40(-) DC appear to prime or prepare T cells, the data imply that signals derived from other cells drive the generation either of Ag-specific regulatory or effector cells in vivo.
Resumo:
Stem cells, either from embryonic or adult sources, have demonstrated the potential to differentiate into a wide range of tissues depending on culture conditions. This makes them prime candidates for use in tissue engineering applications. Current technology allows us to process biocompatible and biodegradable polymers into three-dimensional (3D) configurations, either as solid porous scaffolds or hydrogels, with controlled macro and/or micro spatial geometry and surface chemistry. Such control provides us with the ability to present highly controlled microenvironments to a chosen cell type. However, the precise microenvironments required for optimal expansion and/or differentiation of stem cells are only now being elucidated, and hence the controlled use of stem cells in tissue engineering remains a very young field. We present here a brief review of the current literature detailing interactions between stem cells and 3D scaffolds of varying morphology and chemical properties, concluding with remaining challenges for those interested in tissue engineering using tailored scaffolds and stem cells.
Resumo:
Adult neural progenitors have been isolated from diverse regions of the CNS using methods which primarily involve the enzymatic digestion of tissue pieces; however, interpretation of these experiments can be complicated by the loss of anatomical resolution during the isolation procedures. We have developed a novel, explant-based technique for the isolation of neural progenitors, Living CNS regions were sectioned using a vibratome and small, well-defined discs of tissue punched out. When Cultured. explants from the cortex, hippocampus, cerebellum, spinal cord, hypothalamus, and caudate nucleus all robustly gave rise to proliferating progenitors. These progenitors were similar in behaviour and morphology to previously characterised multipotent hippocampal progenitor lines. Clones from all regions examined could proliferate from single cells and give rise to secondary neurospheres at a low but consistent frequency. Immunostaining demonstrated that clonal cortical progenitors were able to differentiate into both neurons and glial cells, indicating their multipotent characteristics. These results demonstrate it is possible to isolate anatomically resolved adult neural progenitors from small amounts of tissue throughout the CNS, thus, providing a tool for investigating the frequency and characteristics of progenitor cells from different regions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Insulin-like growth factor-I (IGF-I) has multiple effects within the developing nervous system but its role in neurogenesis in the adult nervous system is less clear. The adult olfactory mucosa is a site of continuing neurogenesis that expresses IGF-I, its receptor and its binding proteins. The aim of the present study was to investigate the roles of IGF-I in regulating proliferation and differentiation in the olfactory mucosa. The action of IGF-I was assayed in serum-free culture combined with bromodeoxyuridine-labelling of proliferating cells and immunochemistry for specific cell types. IGF-I and its receptor were expressed by globose basal cells (the neuronal precursor) and by olfactory neurons. IGF-I reduced the numbers of proliferating neuronal precursors, induced their differentiation into neurons and promoted morphological differentiation of neurons. The evidence suggests that IGF-I is an autocrine and/or paracrine signal that induces neuronal precursors to differentiate into olfactory sensory neurons. These effects appear to be similar to the cellular effects of IGF-I in the developing nervous system.
Resumo:
For most of the past century, the prospect of replacing lost or damaged cells in the central nervous system (CNS) was hampered by the opinion that the adult mammalian CNS was incapable of generating new nerve cells. This belief, Like most dogmas, was essentially founded on a lack of experimental evidence to the contrary. The overturning of this 'no new neuron' hypothesis began midway through the twentieth century with a series of reports documenting neurogenesis in the postnatal and adult brain(1), continued with the isolation and in vitro culture of neurogenic cells from the adult mammalian brain(2,3), and culminated in the discovery of a population of muttipotent, selfrenewing cells in the adult CNS (that is, bona fide neural stem cells)(3-5). Although a variety of techniques were initially used, the neurosphere assay (NSA)(3,6) rapidly emerged as the assay of choice and has since become a valuable toot for isolating, and understanding the biology of, embryonic and adult CNS stem cells. Like all technologies, it is not without its limitations. In this article we will hightight several shortcomings of the assay related to its application and interpretation that we believe have led to a significant body of research whose conclusions may well be misleading.