23 resultados para 2D EXSY 13C nuclear magnetic resonance spectroscopy
Resumo:
A finite-difference time-domain (FDTD) thermal model has been developed to compute the temperature elevation in the Sprague Dawley rat due to electromagnetic energy deposition in high-field magnetic resonance imaging (MRI). The field strengths examined ranged from 11.75-23.5 T (corresponding to H-1 resonances of 0.5-1 GHz) and an N-stub birdcage resonator was used to both transmit radio-frequency energy and receive the MRI signals. With an in-plane resolution of 1.95 mm, the inhomogeneous rat phantom forms a segmented model of 12 different tissue types, each having its electrical and thermal parameters assigned. The steady-state temperature distribution was calculated using a Pennes 'bioheat' approach. The numerical algorithm used to calculate the induced temperature distribution has been successfully validated against analytical solutions in the form of simplified spherical models with electrical and thermal properties of rat muscle. As well as assisting with the design of MRI experiments and apparatus, the numerical procedures developed in this study could help in future research and design of tumour-treating hyperthermia applicators to be used on rats in vivo.
Resumo:
AIM: To establish a simple method to quantify muscle/fat constituents in cervical muscles of asymptomatic women using magnetic resonance imaging (MRI), and to determine whether there is an age effect within a defined age range. MATERIALS AND METHODS: MRI of the upper cervical spine was performed for 42 asymptomatic women aged 18-45 years. The muscle and fat signal intensities on axial spin echo T1-weighted images were quantitatively classified by taking a ratio of the pixel intensity profiles of muscle against those of intermuscular fat for the rectus capitis posterior major and minor and inferior obliquus capitis muscles bilaterally. Inter- and intra-examiner agreement was scrutinized. RESULTS: The average relative values of fat within the upper cervical musculature compared with intermuscular fat indicated that there were only slight variations in indices between the three sets of muscles. There was no significant correlation between age and fat indices. There were significant differences for the relative fat within the muscle compared with intermuscular fat and body mass index for the right rectus capitis posterior major and right and left inferior obliquus capitis muscles (p = 0.032). Intraclass correlation coefficients for intraobserver agreement ranged from 0.94 to 0.98. Inter-rater agreement of the measurements ranged from 0.75 to 0.97. CONCLUSION: A quantitative measure of muscle/fat constituents has been developed, and results of this study indicate that relative fatty infiltration is not a feature of age in the upper cervical extensor muscles of women aged 18-45 years. (C) 2005 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Resumo:
In magnetic resonance imaging (MRI), the MR signal intensity can vary spatially and this spatial variation is usually referred to as MR intensity nonuniformity. Although the main source of intensity nonuniformity arises from B, inhomogeneity of the coil acting as a receiver and/or transmitter, geometric distortion also alters the MR signal intensity. It is useful on some occasions to have these two different sources be separately measured and analyzed. In this paper, we present a practical method for a detailed measurement of the MR intensity nonuniformity. This method is based on the same three-dimensional geometric phantom that was recently developed for a complete measurement of the geometric distortion in MR systems. In this paper, the contribution to the intensity nonuniformity from the geometric distortion can be estimated and thus, it provides a mechanism for estimation of the intensity nonuniformity that reflects solely the spatial characteristics arising from B-1. Additionally, a comprehensive scheme for characterization of the intensity nonuniformity based on the new measurement method is proposed. To demonstrate the method, the intensity nonuniformity in a 1.5 T Sonata MR system was measured and is used to illustrate the main features of the method. (c) 2005 American Association of Physicists in Medicine.
Resumo:
A new transceive system for chest imaging for MRI applications is presented. A focused, eight-element transceive torso phased array coil is designed to investigate transmitting a focused radiofrequency field deep within the torso and to enhance signal homogeneity in the heart region. The system is used in conjunction with the SENSE reconstruction technique to enable focused parallel imaging. A hybrid finite-difference-time-domain/method-of-moments method is used to accurately predict the radiofrequency behavior inside the human torso. The simulation results reported herein demonstrate the feasibility of the design concept, which shows that radiofrequency field focusing with SENSE reconstruction is theoretically achievable. (c) 2005 Wiley-Liss, Inc.
Resumo:
Anisotropic magnetic susceptibility tensors chi of paramagnetic metal ions are manifested in pseudocontact shifts, residual dipolar couplings, and other paramagnetic observables that present valuable long-range information for structure determinations of protein-ligand complexes. A program was developed for automatic determination of the chi-tensor anisotropy parameters and amide resonance assignments in proteins labeled with paramagnetic metal ions. The program requires knowledge of the three-dimensional structure of the protein, the backbone resonance assignments of the diamagnetic protein, and a pair of 2D N-15-HSQC or 3D HNCO spectra recorded with and without paramagnetic metal ion. It allows the determination of reliable chi-tensor anisotropy parameters from 2D spectra of uniformly N-15-labeled proteins of fairly high molecular weight. Examples are shown for the 185-residue N-terminal domain of the subunit epsilon from E. coli DNA polymerase III in complex with the subunit theta and La3+ in its diamagnetic and Dy3+, Tb3+, and Er3+ in its paramagnetic form.
Resumo:
The wide-line H-1 nuclear magnetic resonance (NMR) spectrum of paper in equilibrium with ambient humidity consists of super-imposed relatively broad and narrow lines. The narrower line is of the order of 2 kHz wide at half the maximum height, while the broader line is of the order of 40 kHz in width at half height. On the basis of these line widths, the narrow line is assigned to water sorbed to the paper, and the broad line to the polymeric constituents of the paper. It was not possible to distinguish between the various polymeric components of paper contributing to the H-1 NMR spectra. A modified Goldman-Shen pulse sequence was used to generate a spatial magnetisation gradient between the polymer and water phases. The exchange of magnetisation between protons associated with water and those associated with the macromolecules in paper was observed. The exchange of magnetisation is discussed within a heat transfer model for homonuclear dipolar coupling, with exchange being characterised by a spin-diffusion coefficient. Consideration of the magnitude of the initial rate of the exchange process and estimates of the spin-spin relaxation times based on H-1 line widths indicate that some water must exist in a sufficiently immobile state as to allow homonuclear dipolar interactions between adjacent polymer and water protons. Thus, water sorbed onto paper must exist in at least two states in mass exchange with each other. This observation allows certain conclusions to be drawn about the ratio of free/bound water as a function of moisture content and the dispersal of water within the polymer matrix.
Resumo:
Background: left ventricular wall motion on 2d echo (2de) is usually scored visually. we sought to examine the determinants of visually assessed wall motion scoring on 2de by comparison with myocardial thickening quantified on MRI. Methods: using a 16 segment model, we studied 287 segments in 30 patients aged 61+/ -11 years (6 female), with ischaemic LV dysfunction (defined by at least 2 segments dysfunctional on 2de). 2de was performed in 5 views and wall motion scores (WMS) assigned: 1 (normal) 103 segments, 2 (hypokinetic) 93 segments, 3 (akinetic) 87 segments. MRI was used to measure end systolic wall thickness (ESWT), end diastolic wall thickness (EDWT) and percentage systolic wall thickening (SWT%) in the plane of the 2de and to assess WMS in the same planes visually. No patient had a clinical ischemic event between the tests. Results: visual assessment of wall motion by 2de and MRI showed moderate agreement (kappa = 0.425). Resting 2de wall motion correlated significantly (p