63 resultados para 1,25 dihyroxy vitamin D
Resumo:
Background: There is growing evidence that vitamin D is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, we have explored the role of vitamin D in the developing brain and behaviour using whole animal models. Methods: Sprague-Dawley rats were fed a vitamin D deficient diet (DVD) or control diet 6 weeks prior to mating and housed under UVB-free lighting conditions. On the day of birth all rats were fed a control diet for the remainder of the study. We observed behaviour at two timepoints; on the day of birth to study maternal behaviour, and at 10 weeks of age to study offspring behaviour in adulthood, under baseline and drug induced conditions (MK-801, haloperidol, amphetamine). Results: Prenatal vitamin D deficiency results in subtle alterations in maternal behaviour as well as long lasting effects on the adult offspring, despite a return to normal vitamin D levels during postnatal life. These affects were specific to transient prenatal vitamin D depletion as adult vitamin D depletion, combined prenatal and chronic postnatal vitamin D depletion, or ablation of the vitamin D receptor in mice led to markedly different outcomes. Conclusions: The developmental vitamin D (DVD) model now draws strength from epidemiological evidence of schizophrenia and animal experiments. Although the DVD model does not replicate every aspect of schizophrenia, it has several attractive features: (1) the exposure is based on clues from epidemiology; (2) it reproduces the increase in lateral ventricles; (3) it reproduces well-regarded behavioural phenotypes associated with schizophrenia (e.g. MK- 801 induced hyperlocomotion); and (4) it implicates a disturbance in dopamine signaling. In summary, low prenatal levels of vitamin D can influence critical components of orderly brain development and that this has a long lasting effect on behaviour.
Resumo:
Inorganic sulfate is one of the most abundant anions in mammalian plasma and is essential for proper cell growth and development, as well as detoxification and activation of many biological compounds. To date, little is understood how physiological levels of sulfate are maintained in the body. Our studies, and of others, have identified the NAS(i)-1 protein to be a functional sulfate transporter in the kidney and intestine, and due to this localization, constitutes a strong candidate gene for maintaining body sulfate homeostasis. Several factors, including hormones and metabolic conditions, have been shown to alter NAS(i)-1 mRNA and protein levels in vivo. In this study, we describe the transcriptional regulation of NaSi-1, with a focus on the mouse NaSi-1 gene (Nas1) that was recently cloned in our laboratory. Vitamin D (1,25-(OH)(2)D-3) and thyroid hormone (T-3) led to an increase in Nas1 promoter activity in OK cells. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3 responsive element (IRO T3RE) at -426 to -425 which conferred 1,25-(OH)(2)D-3 and T-3 responsiveness respectively. These findings suggest for vitamin D and thyroid hormone regulation of NaSi-1, may provide important clues to the physiological control of sulfate homeostasis.
Resumo:
The association between vitamin D levels and skeletal growth has long been recognized. However, exposure to low levels of vitamin D during early life is also known to alter brain development, and is a candidate risk factor for schizophrenia. This study examines the association between four polymorphisms in the vitamin D receptor (VDR) and 1) risk of schizophrenia, and 2) three anthropometric variables (height, head size, and head shape). Four single-nucleotide polymorphisms (SNPs; rs10735810/FokI, rsl544410/BsmI, rs7975232/ApaI, and rs731236/TaqI) in the VDR gene were genotyped in 179 individuals with schizophrenia and 189 healthy controls. No significant associations were detected between any of the four VDR SNPs and risk of schizophrenia. Patients were slightly but significantly shorter compared to controls. Of the four SNPs, only rs10735810/FokI was associated with any of the anthropometric measures: the M4 isoform of this SNP was significantly associated with larger head size (P = 0.002). In light of the evidence demonstrating a role for vitamin D during brain development, the association between polymorphisms in VDR and brain development warrants closer scrutiny.
Resumo:
Animal experiments have shown that Vitamin D plays a role in both brain development and adult brain function. The adult Vitamin D receptor null mutant mouse (VDR -/-) is reported to be less active and more anxious than wild-type litter mate controls and to have poor swimming ability. However, an anxious behavioural phenotype is inferred from differences in locomotor behaviour. This is a general problem in behavioural phenotyping where a neurological phenotype is inferred from changes in locomotion which will be affected by non-neurological factors, such as muscle fatigue. In this study of VDR -/-, we conducted a detailed examination of one form of motor behaviour, swimming, compared to wildtype littermate controls. Swimming was assessed using a forced swim test, a laneway swimming test and a watermaze test using a visible platform. Post-swimming activity was assessed by comparing grooming and rearing behaviour before, and 5 min after, the forced swimming test. We replicated previous findings in which VDR -/- mice demonstrate more sinking episodes than wildtype controls in the forced swim test but they were similar to controls in the time taken to swim a 1 m laneway, and in the time taken to reach a visible platform in the watermaze. Thus, the VDR -/- mice were able to swim but were not able to float. Grooming and rearing behaviour of the VDR -/- mice was similar to wildtype controls before the forced swim but the VDR -/- were much less active after the swim compared with wildtype mice which displayed high levels of grooming and rearing. We conclude that VDR -/- mice have muscular and motor impairments that do not affect their ability to swim but significantly alters the ability to float as well as their post-swimming activity. Differences in muscle strength may confound tests of activity that are used to infer an anxious phenotype. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Background: We have previously shown that the offspring of vitamin D3 depleted rats have enlarged ventricles and altered neurotrophin profiles (reduced NGF and GDNF). These findings enhance the biological plausibility that low prenatal vitamin D may be a risk factor for schizophrenia. Our recent behavioural studies have found that adult rats with developmental vitamin D deficiency (DVD) have a subtle increase in baseline locomotor activity and a heightened response to dopamine (DA) antagonists. The aim of this study was to investigate brain DA neurochemistry in the DVD model. Methods: We examined cerebrums and striatal tissue from neonates and a variety of brain tissues from the remaining littermates at adulthood. DA, DOPAC, HVA, serotonin and 5HIAA were analysed by HPLC. Single point comparisons for DA1, DA2 and NMDA receptors were also assessed in these tissues. Results: Significant increases in DA and HVA were found in brains from DVD deplete neonates (P=0.01). However, DA and its metabolites were not increased in either the neonate or adult striatum, however there was a trend towards increased DA and its metabolites in the accumbens (P=0.1). Receptor densities were unaffected by prenatal vitamin D levels. Conclusions: Although the effect of maternal diet appears to increase DA production and turnover in neonatal brain, this does not persist into adulthood. Thus other factors must underlie the increased locomotor activity noted in these animals. Future experiments will concentrate on monitoring accumbens and striatal DA release and turnover using microdialysis in pharmacologically challenged behavioural paradigms. References: Eyles D, Brown J; Mackay-Sim A, McGrath J, Feron F. (2003) Vitamin D3 and brain development. Neuroscience 118 (3) 641–653. Burne T, McGrath J, Eyles D, Mackay-Sim A. Behavioural characterization of vitamin D receptor knockout mice. (2005) Behavioural Brain Res: 157 299–308.
Speculations on the role of vitamin D and calcium-binding proteins in the aetiology of schizophrenia