277 resultados para ENTERIC NERVOUS SYSTEM
Resumo:
The pathogenesis-related (PR) protein superfamily is widely distributed in the animal, plant, and fungal kingdoms and is implicated in human brain tumor growth and plant pathogenesis. The precise biological activity of PR proteins, however, has remained elusive. Here we report the characterization, cloning and structural homology modeling of Tex31 from the venom duct of Conus textile. Tex31 was isolated to >95% purity by activity-guided fractionation using a para-nitroanilide substrate based on the putative cleavage site residues found in the propeptide precursor of conotoxin TxVIA. Tex31 requires four residues including a leucine N-terminal of the cleavage site for efficient substrate processing. The sequence of Tex31 was determined using two degenerate PCR primers designed from N-terminal and tryptic digest Edman sequences. A BLAST search revealed that Tex31 was a member of the PR protein superfamily and most closely related to the CRISP family of mammalian proteins that have a cysteine-rich C-terminal tail. A homology model constructed from two PR proteins revealed that the likely catalytic residues in Tex31 fall within a structurally conserved domain found in PR proteins. Thus, it is possible that other PR proteins may also be substrate-specific proteases.
Resumo:
The origin of intracellular Ca2+ concentration ([Ca2+](i)) transients stimulated by nicotinic ( nAChR) and muscarinic ( mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+](i) increases that were reduced to similar to 60% of control in the presence of either atropine ( 1 muM) or mecamylamine ( 3 muM) and to < 20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+](i) response was reduced to 50% by 10 μM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+](i) responses. Perforated-patch whole cell recording at - 60 mV shows that the rise in [Ca2+](i) is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+](i) and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.
Resumo:
A barracuda implicated in ciguatera fish poisoning in Guadeloupe was estimated to have an overall flesh toxicity of 15 MUg/g using mouse bioassay. A lipid soluble extract was separated into two toxic fractions, FrA and FrB, on a LH20 Sephadex column eluted with dichloromethane/methanol (1:1). When intraperitoneal injected into mice, FrA provoked symptoms characteristic of slow-acting ciguatoxins, whereas FrB produced symptoms indicative of fast-acting toxins (FAT). High performance liquid chromatography/mass spectrometry/radio-ligand binding (HPLC/MS/RLB) analysis confirmed the two fractions were distinct, because only a weak overlap of some compounds was observed. HPLC/MS/RLB analysis revealed C-CTX-1 as the potent toxin present in FrA, and two coeluting active compounds at m/z 809.43 and 857.42 in FrB, all displaying the characteristic pattern of ion formation for hydroxy-polyethers. Other C-CTX congeners and putative hydroxy-polyether-like compounds were detected in both fractions, however, the RLB found them inactive. C-CTX-1 accounted for >90% of total toxicity in this barracuda and was confirmed to be a competitive inhibitor of brevetoxin binding to voltage-sensitive sodium channels (VSSCs) with a potency two-times lower than P-CTX-1. However, FAT active on VSSCs and
Resumo:
Background: Gestational trophoblastic disease is a fascinating group of pregnancy disorders characterised by abnormal proliferation of trophoblast, ranging from benign to malignant. Because the disease is uncommon, there is a need to formulate management with the assistance of collective information. Methodology: A review of available information from English written literature was undertaken especially data reported by registries around the world (Charing Cross Hospital in England, the North-western University and the New England area in the USA as well as our own experience in Queensland, Australia). Where possible, collated data from relevant studies were analysed to answer some of the questions posed in clinical practice, with reference to metastatic disease to liver and brain, twinning of molar gestation and coexisting fetus, and placental-site tumour. Results: We found that molar gestation can be classified according to its clinical presentation which influences the time taken to reach human chorionic gonadotropin (HCG) 'negativity' and the risk of persisting disease. Categorisation of risk is the basis for choice of chemotherapy to achieve good outcomes. Metastases to liver and brain remain problems in management; the development of 'new' metastases during chemotherapy is a very poor prognostic factor. In the variant of twinning with molar gestation and coexisting fetus, it is important to elucidate the fetal karyotype in planning management: a 69XXX fetus is not salvageable but a normal 46XX or 46XY fetus faces the prospect of early preterm delivery. The placental-site tumour is very rare; localised disease is curable by surgery; chemotherapy is less effective in disseminated disease. From collated worldwide data, the recurrence rate after one mole is 1.3% and after two or more is 20%. Reproductive outcome in subsequent pregnancies, even after multidrug chemotherapy, is not different from the general population. Because of the increased risk long-term of second tumours after multidrug chemotherapy a closer surveillance of these patients is necessary Conclusion: In general, the disease in its persisting or malignant form is 'a cancer model par excellence' because of an identifiable precursor condition, a reliable HCG marker, and sensitivity of the disease to cytotoxic drugs. With current management, retention of fertility is possible and normal reproductive outcome assured.
Resumo:
Background: Human neuronal protein (hNP22) is a gene with elevated messenger RNA expression in the prefrontal cortex of the human alcoholic brain. hNP22 has high homology with a rat protein (rNP22). These proteins also share homology with a number of cytoskeleton-interacting proteins. Methods: A rabbit polyclonal antibody to an 18-amino acid epitope was produced for use in Western and immunohistochemical analysis. Samples from the human frontal and motor cortices were used for Western blots (n = 10), whereas a different group of frontal cortex and hippocampal samples were obtained for immunohistochemistry (n = 12). Results: The hNP22 antibody detected a single protein in both rat and human brain. Western blots revealed a significant increase in hNP22 protein levels in the frontal cortex but not the motor cortex of alcoholic cases. Immunohistochemical studies confirmed the increased hNP22 protein expression in all cortical layers. This is consistent with results previously obtained using Northern analysis. Immunohistochemical analysis also revealed a significant increase of hNP22 immunoreactivity in the CA3 and CA4 but not other regions of the hippocampus. Conclusions: It is possible that this protein may play a role in the morphological or plastic changes observed after chronic alcohol exposure and withdrawal, either as a cytoskeleton-interacting protein or as a signaling molecule.
Resumo:
Experimental antoimmune encephalomyelitis (EAE) is an organ-specific autoimmune disease characterised by inflammation and demyelination of the central nervous system and is the best available animal model of multiple sclerosis (MS). Since previous studies have shown that EAE is less severe or is delayed in onset during pregnancy and that administration of the pregnancy hormone early pregnancy factor (EPF) down-regulates EAE, experiments in the present study were designed to explore further the role of EPF in EAE. By using the rosette inhibition test, the standard bioassay for EPF and, by semi-quantitative RT-PCR techniques, we have now shown that inflammatory cells from the spinal cord of rats with EAE can produce and secrete EPF, with production being greatest during recovery from disease. Administration of EPF to rats with EAE resulted in a significant increase in the expression of IL-4 and IL-10 mRNA and a significant decrease in IFN-gamma mRNA expression in spinal cord inflammatory cells. Encephalitogenic MBP-specific T cell lines were prepared from popliteal lymph nodes of rats with EAE. Proliferation assays using these cells demonstrated the ability of exogenous EPF to down-regulate the responses of T lymphocytes to MBP. (C) 2003 Elsevier B.V. All rights reserved.