449 resultados para Complementary DNA library
Resumo:
View to south-east elevation with corrugated steel cladding, plywood, concrete block and colonnade, as seen from exterior.
Resumo:
View to south-east elevation; entrance stair, plywood and sheet steel cladding and colonnade, as seen from exterior.
Resumo:
View of timber batten screen to verandah behind and entrance stair, as seen from exterior.
Resumo:
View of timber batten screen to north-east elevation with verandah behind.
Resumo:
View of steel-framed timber screen to verandah.
Resumo:
View of second floor reading area with rigid frames and air-conditioning ducting.
Resumo:
View to south-east elevation as seen from exterior.
Resumo:
North-west elevation as seen from Building K.
Resumo:
View to entrance verandah on north-east elevation and sunshades to north-west elevation.
Resumo:
Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.
Resumo:
Old and New World phlebotomine sand fly species were screened for infection with Wolbachia, intracellular bacterial endosymbionts found in many arthropods and filarial nematodes. Of 53 samples representing 15 species, nine samples of four species were found positive for Wolbachia by polymerase chain reaction amplification using primers for the Wolbachia surface protein (wsp) gene. Five of the wsp gene fragments from four species were cloned, sequenced, and used for phylogenetic analysis. These wsp sequences were placed in three different clades within the arthropod associated Wolbachia (groups A and B), suggesting that Wolbachia has infected sand flies on more than one occasion. Two distantly related sand fly species, Lutzomyia (Psanthyromyia) shannoni (Dyar) and Lutzomyia (Nyssomyia) whitmani (Antunes & Coutinho), infected with an identical Wolbachia strain suggest a very recent horizontal transmission.
Resumo:
A diagnostic PCR assay was designed based on conserved regions of previously sequenced densovirus genomic DNA isolated from mosquitoes. Application of this assay to different insect cell lines resulted in a number of cases of consistent positive amplification of the predicted size fragment. Positive PCR results were subsequently confirmed to correlate with densovirus infection by both electron microscopy and indirect fluorescent antibody test. In each case the nucleotide sequence of the amplified PCR fragments showed high identity to previously reported densoviruses isolated from mosquitoes. Phylogenetic analysis based on these sequences showed that two of these isolates were examples of new densoviruses. These viruses could infect and replicate in mosquitoes when administered orally or parenterally and these infections were largely avirulent. In one virus/mosquito combination vertical transmission to progeny was observed. The frequency with which these viruses were detected would suggest that they may be quite common in insect cell lines.
Resumo:
Despite many successes of conventional DNA sequencing methods, some DNAs remain difficult or impossible to sequence. Unsequenceable regions occur in the genomes of many biologically important organisms, including the human genome. Such regions range in length from tens to millions of bases, and may contain valuable information such as the sequences of important genes. The authors have recently developed a technique that renders a wide range of problematic DNAs amenable to sequencing. The technique is known as sequence analysis via mutagenesis (SAM). This paper presents a number of algorithms for analysing and interpreting data generated by this technique.
Resumo:
Marine invertebrate sperm proteins are particularly interesting because they are characterized by positive selection and are likely to be involved in prezyogotic isolation and, thus, speciation. Here, we present the first survey of inter and intraspecific variation of a bivalve sperm protein among a group of species that regularly hybridize in nature. M7 lysin is found in sperm acrosomes of mussels and dissolves the egg vitelline coat, permitting fertilization. We sequenced multiple alleles of the mature protein-coding region of M7 lysin from allopatric populations of mussels in the Mytilus edulis species group (M. edulis, M. galloprovincialis, and M. trossulus). A significant McDonald-Kreitman test showed an excess of fixed amino acid replacing substitutions between species, consistent with positive selection. In addition, Kolmogorov-Smirnov tests showed significant heterogeneity in polymorphism to divergence ratios for both synonymous variation and combined synonymous and non-synonymous variation within M. galloprovincialis. These results indicate that there has been adaptive evolution at M7 lysin and, furthermore, shows that positive selection on sperm proteins can occur even when post-zygotic reproductive isolation is incomplete.