370 resultados para 01 Mathematical Sciences
Resumo:
Racing algorithms have recently been proposed as a general-purpose method for performing model selection in machine teaming algorithms. In this paper, we present an empirical study of the Hoeffding racing algorithm for selecting the k parameter in a simple k-nearest neighbor classifier. Fifteen widely-used classification datasets from UCI are used and experiments conducted across different confidence levels for racing. The results reveal a significant amount of sensitivity of the k-nn classifier to its model parameter value. The Hoeffding racing algorithm also varies widely in its performance, in terms of the computational savings gained over an exhaustive evaluation. While in some cases the savings gained are quite small, the racing algorithm proved to be highly robust to the possibility of erroneously eliminating the optimal models. All results were strongly dependent on the datasets used.
Resumo:
The elastic net and related algorithms, such as generative topographic mapping, are key methods for discretized dimension-reduction problems. At their heart are priors that specify the expected topological and geometric properties of the maps. However, up to now, only a very small subset of possible priors has been considered. Here we study a much more general family originating from discrete, high-order derivative operators. We show theoretically that the form of the discrete approximation to the derivative used has a crucial influence on the resulting map. Using a new and more powerful iterative elastic net algorithm, we confirm these results empirically, and illustrate how different priors affect the form of simulated ocular dominance columns.
Resumo:
PTS1 proteins are peroxisomal matrix proteins that have a well conserved targeting motif at the C-terminal end. However, this motif is present in many non peroxisomal proteins as well, thus predicting peroxisomal proteins involves differentiating fake PTS1 signals from actual ones. In this paper we report on the development of an SVM classifier with a separately trained logistic output function. The model uses an input window containing 12 consecutive residues at the C-terminus and the amino acid composition of the full sequence. The final model gives a Matthews Correlation Coefficient of 0.77, representing an increase of 54% compared with the well-known PeroxiP predictor. We test the model by applying it to several proteomes of eukaryotes for which there is no evidence of a peroxisome, producing a false positive rate of 0.088%.
Resumo:
Chambers and Quiggin (2000) use state-contingent representations of risky production technologies to establish important theoretical results concerning producer behavior under uncertainty. Unfortunately, perceived problems in the estimation of state-contingent models have limited the usefulness of the approach in policy formulation. We show that fixed and random effects state-contingent production frontiers can be conveniently estimated in a finite mixtures framework. An empirical example is provided. Compared to conventional estimation approaches, we find that estimating production frontiers in a statecontingent framework produces significantly different estimates of elasticities, firm technical efficiencies and other quantities of economic interest.
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
Finite mixture models are being increasingly used to model the distributions of a wide variety of random phenomena. While normal mixture models are often used to cluster data sets of continuous multivariate data, a more robust clustering can be obtained by considering the t mixture model-based approach. Mixtures of factor analyzers enable model-based density estimation to be undertaken for high-dimensional data where the number of observations n is very large relative to their dimension p. As the approach using the multivariate normal family of distributions is sensitive to outliers, it is more robust to adopt the multivariate t family for the component error and factor distributions. The computational aspects associated with robustness and high dimensionality in these approaches to cluster analysis are discussed and illustrated.
Resumo:
Time-course experiments with microarrays are often used to study dynamic biological systems and genetic regulatory networks (GRNs) that model how genes influence each other in cell-level development of organisms. The inference for GRNs provides important insights into the fundamental biological processes such as growth and is useful in disease diagnosis and genomic drug design. Due to the experimental design, multilevel data hierarchies are often present in time-course gene expression data. Most existing methods, however, ignore the dependency of the expression measurements over time and the correlation among gene expression profiles. Such independence assumptions violate regulatory interactions and can result in overlooking certain important subject effects and lead to spurious inference for regulatory networks or mechanisms. In this paper, a multilevel mixed-effects model is adopted to incorporate data hierarchies in the analysis of time-course data, where temporal and subject effects are both assumed to be random. The method starts with the clustering of genes by fitting the mixture model within the multilevel random-effects model framework using the expectation-maximization (EM) algorithm. The network of regulatory interactions is then determined by searching for regulatory control elements (activators and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged correlation coefficients measurement. The method is applied to two real time-course datasets from the budding yeast (Saccharomyces cerevisiae) genome. It is shown that the proposed method provides clusters of cell-cycle regulated genes that are supported by existing gene function annotations, and hence enables inference on regulatory interactions for the genetic network.