250 resultados para Neural control
Resumo:
China holds the key to solving many questions crucial to global control of severe acute respiratory syndrome (SARS). The disease appears to have originated in Guangdong Province, and the causative agent, SARS coronavirus, is likely to have originated from an animal host, perhaps sold in public markets. Epidemiologic findings, integral to defining an animal-human linkage, may be confirmed by laboratory studies; once animal host(s) are confirmed, interventions may be needed to prevent further animal-to-human transmission. Community seroprevalence studies may help determine the basis for the decline in disease incidence in Guangdong Province after February 2002. China will also be able to contribute key data about how the causative agent is transmitted and how it is evolving, as well as identifying pivotal factors influencing disease outcome.
Resumo:
Objectives: The aim was to determine whether methadone maintenance treatment reduced heroin use, syringe sharing and HIV or hepatitis C incidence among prisoners. Methods: All eligible prisoners seeking drug treatment were randomised to methadone or a waitlist control group from 1997 to 1998 and followed up after 4 months. Heroin use was measured by hair analysis and self report; drugs used and injected and syringe sharing were measured by self report. Hepatitis C and HIV incidence was measured by serology. Results: Of 593 eligible prisoners, 382 (64%) were randomised to MMT (n = 191) or control (n = 191). 129 treated and 124 control subjects were followed up at 5 months. Heroin use was significantly lower among treated than control subjects at follow up. Treated subjects reported lower levels of drug injection and syringe sharing at follow up. There was no difference in HIV or hepatitis C incidence. Conclusions: Consideration should be given to the introduction of prison methadone programs particular where community based programs exist. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Control recommendations are presented for four genetic or familial diseases that cause significant morbidity and mortality in affected English Bull Terriers. Bull Terrier polycystic kidney disease is an autosomal dominant disease diagnosed by detecting a minimum of three renal cysts, with cysts present in both kidneys, and similarly affected family members to confirm the inherited nature of the cysts. Bull Terrier hereditary nephritis is an autosomal dominant disease diagnosed in otherwise normal animals with urinary protein: creatinine ratios persistently >0.3 and no significant urinary sediment, a family history of the disease, and characteristic glomerular basement membrane lesions. Mitral valve myxomatous degeneration and left ventricular outflow tract obstruction in Bull Terriers are familial diseases diagnosed by auscultating characteristic murmurs in affected animals. Excluding animals with these clinical signs from the breeding pool will reduce the prevalence rates of these diseases, however maintenance of an effective population size is also important. Providing breeders with information on genetics, including the risks associated with inbreeding and the benefits of outcrossing, is likely to improve canine breeding practices, thus increasing fitness and fecundity of these purebred dogs.
Resumo:
The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.
Resumo:
The integrated control of nitrate recirculation and external carbon addition in a predenitrification biological wastewater treatment system is studied. The proposed control structure consists of four feedback control loops, which manipulate the nitrate recirculation and the carbon dosage flows in a highly coordinated manner such that the consumption of external carbon is minimised while the nitrate discharge limits (based on both grab and composite samples) are met. The control system requires the measurement of the nitrate concentrations at the end of both the anoxic and the aerobic zones. Distinct from ordinary control systems, which typically minimise the variation in the controlled variables, the proposed control system essentially maximises the diurnal variation of the effluent nitrate concentration and through this maximises the use of influent COD for denitrification, thus minimising the requirement for external carbon source. Simulation studies using a commonly accepted simulation benchmark show that the controlled system consistently achieves the designated effluent quality with minimum costs.
Resumo:
Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Uptake of nutrients and water depends on the growth of roots through elongation of individual cells near the. root tip. Many of the numerous components of Type I primary cell walls, those of dicotyledons and monocotyledons other than grasses (Poaceae), have been determined, and many hypotheses have been proposed for the control of cell expansion. This important aspect of plant growth still needs elucidation, however. A model is proposed in which pectin, which occurs as a calcium (Ca) pectate gel between the load-bearing cellulose microfibrils and xyloglucan (XG) chains, controls the rate at which cells expand. It is considered that the increasing tension generated by the expanding cell is transmitted to interlocked XG chains and cellulose microfibrils. The resulting deformation of the embedded Ca pectate gel elicits the excretion of protons from the cytoplasm, possibly via compounds such as cell wall-associated kinases, that weakens the Ca pectate gel, permitting slippage of XG molecules through the action of expansin. Further slippage is prevented by deformation of the pectic gel, proton diffusion, and the transfer of residual tension to adjacent XG chains. Evidence for this model is based on the effects of pH, Ca, and aluminum (Al) on root elongation and on the reactions of these cations with Ca pectate. This model allows for genetic selection of plants and adaptation of individual plants to root environmental conditions.
Resumo:
Mental retardation in individuals with Down syndrome (DS) is thought to result from anomalous development and function of the brain; however, the underlying neuropathological processes have yet to be determined. Early implementation of special care programs result in limited, and temporary, cognitive improvements in DS individuals. In the present study, we investigated the possible neural correlates of these limited improvements. More specifically, we studied cortical pyramidal cells in the frontal cortex of Ts65Dn mice, a partial trisomy of murine chromosome 16 (MMU16) model characterized by cognitive deficits, hyperactivity, behavioral disruption and reduced attention levels similar to those observed in DS, and their control littermates. Animals were raised either in a standard or in an enriched environment. Environmental enrichment had a marked effect on pyramidal cell structure in control animals. Pyramidal cells in environmentally enriched control animals were significantly more branched and more spinous than non-enriched controls. However, environmental enrichment had little effect on pyramidal cell structure in Ts65Dn mice. As each dendritic spine receives at least one excitatory input, differences in the number of spines found in the dendritic arbors of pyramidal cells in the two groups reflect differences in the number of excitatory inputs they receive and, consequently, complexity in cortical circuitry. The present results suggest that behavioral deficits demonstrated in the Ts65Dn model could be attributed to abnormal circuit development.
Resumo:
For dynamic closed loop control of a multilevel converter with a low pulse number (ratio of switching frequency to synthesized fundamental), natural sampled pulse-width modulation (PWM) is the best form of modulation. Natural sampling does not introduce distortion or a delayed response to the modulating signal. However previous natural sampled PWM implementations have generally been analog. For a modular multilevel converter, a digital implementation has advantages of accuracy and flexibility. Re-sampled uniform PWM is a novel digital modulation technique which approaches the performance of natural PWM. Both hardware and software implementations for a five level multilevel converter phase are presented, demonstrating the improvement over uniform PWM.