318 resultados para Atom optics
Resumo:
The suprathermal particles, electrons and protons, coming from the magnetosphere and precipitating into the high-latitude atmosphere are an energy source of the Earth's ionosphere. They interact with ambient thermal gas through inelastic and elastic collisions. The physical quantities perturbed by these precipitations, such as the heating rate, the electron production rate, or the emission intensities, can be provided in solving the kinetic stationary Boltzmann equation. This equation yields particle fluxes as a function of altitude, energy, and pitch angle. While this equation has been solved through different ways for the electron transport and fully tested, the proton transport is more complicated. Because of charge-changing reactions, the latter is a set of two-coupled transport equations that must be solved: one for protons and the other for H atoms. We present here a new approach that solves the multistream proton/hydrogen transport equations encompassing the collision angular redistributions and the magnetic mirroring effect. In order to validate our model we discuss the energy conservation and we compare with another model under the same inputs and with rocket observations. The influence of the angular redistributions is discussed in a forthcoming paper.
Resumo:
We report experimental studies of metastable chaos in the far-infrared ammonia ring: laser. When the laser pump power is switched from above chaos threshold to slightly below, chaotic intensity pulsations continue for a varying time afterward before decaying to either periodic or cw emission. The behavior is in good qualitative agreement with that predicted by the Lorenz equations, previously used to describe this laser. The statistical distribution of the duration of the chaotic transient is measured and shown to be in excellent agreement with the Lorenz equations in showing a modified exponential distribution. We also give a brief numerical analysis and graphical visualization of the Lorenz equations in phase space illustrating the boundary between the metastable chaotic and the stable fixed point basins of attraction. This provides an intuitive understanding of the metastable dynamics of the Lorenz equations and the experimental system.
Resumo:
A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different. angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder. (C) 1997 Optical Society of America.
Resumo:
We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes. (C) 1997 Optical Society of America.
Resumo:
We analyze the properties of light beams carrying phase singularities, or optical vortices. The transformations of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible scenarios where additional vortices appear or annihilate during free propagation of such a combined beam. Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density distribution in a combined beam is established. We show that, in spite of any variation in the number of vortices in a combined beam, the total angular momentum is constant during the propagation. [S1050-2947(97)09910-1].
Resumo:
The Cr-III atom in CaK[Cr(C2O4)(3)].5H(2)O, has a regular octahedral geometry with three oxalato groups completing the coordination, Both the calcium and potassium cations are coordinated to the O atom of the oxalate group.
Resumo:
Encyclopedia of Nanoscience and Nanotechnology® is the World's first encyclopedia ever published in the field of nanotechnology. The 10-volume Encyclopedia is an unprecedented single reference source that provides ideal introduction and overview of most recent advances and emerging new aspects of nanotechnology spanning from science to engineering to medicine. Although there are many books/handbook and journals focused on nanotechnology, no encyclopedic reference work has been published covering all aspects of nanoscale science and technology dealing with materials synthesis, processing, fabrication, probes, spectroscopy, physical properties, electronics, optics, mechanics, biotechnology, devices, etc. The Encyclopedia fills this gap to provide basic information on all fundamental and applied aspects of nanotechnology by drawing on two decades of pioneering research. It is the only scientific work of its kind since the beginning of the field of nanotechnology bringing together core knowledge and the very latest advances. It is written for all levels audience that allows non-scientists to understand the nanotechnology while providing up-to-date latest information to active scientists to experts in the field. This outstanding encyclopedia is an indispensable source for research professionals, technology investors and developers seeking the most up-to-date information on the nanotechnology among a wide range of disciplines from science to engineering to medicine.
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
In this work, we present a systematic approach to the representation of modelling assumptions. Modelling assumptions form the fundamental basis for the mathematical description of a process system. These assumptions can be translated into either additional mathematical relationships or constraints between model variables, equations, balance volumes or parameters. In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The smallest indivisible syntactical element, the so called assumption atom has been identified as a triplet. With this syntax a modelling assumption can be described as an elementary assumption, i.e. an assumption consisting of only an assumption atom or a composite assumption consisting of a conjunction of elementary assumptions. The above syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and necessary conditions for checking them are given. These transformations can be used in several ways and their implications can be analysed by formal methods. The modelling assumptions define model hierarchies. That is, a series of model families each belonging to a particular equivalence class. These model equivalence classes can be related to primal assumptions regarding the definition of mass, energy and momentum balance volumes and to secondary and tiertinary assumptions regarding the presence or absence and the form of mechanisms within the system. Within equivalence classes, there are many model members, these being related to algebraic model transformations for the particular model. We show how these model hierarchies are driven by the underlying assumption structure and indicate some implications on system dynamics and complexity issues. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We examine constraints on quantum operations imposed by relativistic causality. A bipartite superoperator is said to be localizable if it can be implemented by two parties (Alice and Bob) who share entanglement but do not communicate, it is causal if the superoperator does not convey information from Alice to Bob or from Bob to Alice. We characterize the general structure of causal complete-measurement superoperators, and exhibit examples that are causal but not localizable. We construct another class of causal bipartite superoperators that are not localizable by invoking bounds on the strength of correlations among the parts of a quantum system. A bipartite superoperator is said to be semilocalizable if it can be implemented with one-way quantum communication from Alice to Bob, and it is semicausal if it conveys no information from Bob to Alice. We show that all semicausal complete-measurement superoperators are semi localizable, and we establish a general criterion for semicausality. In the multipartite case, we observe that a measurement superoperator that projects onto the eigenspaces of a stabilizer code is localizable.
Resumo:
What fundamental constraints characterize the relationship between a mixture rho = Sigma (i)p(i)rho (i) of quantum states, the states rho (i) being mixed, and the probabilities p(i)? What fundamental constraints characterize the relationship between prior and posterior states in a quantum measurement? In this paper we show that then are many surprisingly strong constraints on these mixing and measurement processes that can be expressed simply in terms of the eigenvalues of the quantum states involved. These constraints capture in a succinct fashion what it means to say that a quantum measurement acquires information about the system being measured, and considerably simplify the proofs of many results about entanglement transformation.