233 resultados para 270500 Zoology
Resumo:
There has been much argument about the phylogenetic relationships of the four suborders of lice (Insecta: Phthiraptera). Lyal's study of the morphology of lice indicated that chewing/biting lice (Mallophaga) are paraphyletic with respect to sucking lice (Anoplura). To test this hypothesis we inferred the phylogeny of 33 species of lice from small subunit (SSU) rRNA sequences (18S rRNA). Liposcelis sp. from the Liposcelididae (Psocoptera) was used for outgroup reference. Phylogenetic relationships among the four suborders of lice inferred from these sequences were the same as those inferred from morphology. The Amblycera is apparently the sister-group to all other lice whereas the Rhynchophthirina is apparently sister to the Anoplura; these two suborders are sister to the Ischnocera, i.e. (Amblycera (Ischnocera (Anoplura, Rhynchophthirina))). Thus, the Mallophaga (Amblycera, Ischnocera, Rhynchophthirina) is apparently paraphyletic with respect to the Anoplura. Our analyses also provide evidence that: (i) each of the three suborders of lice that are well represented in our study (the Amblycera, Ischnocera, and Anoplura) are monophyletic; (ii) the Boopiidae is monophyletic; (iii) the genera Heterodoxus and Latumcephalum (Boopiidae) are more closely related to one another than either is to the genus Boopia (also Boopiidae); (iv) the Ricinidae and Laemobothridae may be sister-taxa; (v) the Philopteridae may be paraphyletic with respect to the Trichodectidae; (vi) the genera Pediculus and Pthirus are more closely related to each other than either is to the genus Pedicinus ; and (vii) in contrast to published data for mitochondrial genes, the rates of nucleotide substitution in the SSU rRNA of lice are not higher than those of other insects, nor do substitution rates in the suborders differ substantially from one another.
Resumo:
Black-striped wallabies (Macropus dorsalis) are uncommon to rare in most of their former range, yet in parts of central Queensland where they are still locally common they are regarded as a serious pasture pest. There is considerable pressure from cattle graziers to reduce their density because of the putative damage that they cause to cattle pasture. Here we examined the effects of this species and other herbivores on pasture by monitoring vegetation cover between 1993 and 1998 in exclosures in brigalow, and poplar box communities on three grazing properties in the Maranoa region. The exclosures selectively allowed access to either: all vertebrate grazers including cattle; rabbits, bettongs, and wallabies; rabbits and bettongs; no vertebrate grazers. The greatest effects on the structure and species composition of pasture were caused by cattle, but wallabies did consume commercially important quantities of grass at some times of the year. This conflicts with local opinion that sees wallabies as the major cause of pasture degradation. Herein lies the management problem that sees continued reduction in wallaby habitat, and fragmentation of the species.
Resumo:
Skinks from the genera Eulamprus, Gnypetoscincus and Nangura are a prominent component of the reptile fauna of the mesic forests of the east coast of Australia and have been the subject of numerous ecological studies. Highly conserved morphology and the retention of ancestral traits have limited our understanding of the relationships within and among these genera beyond an initial identification of species groups within Eulamprus. To address this deficit and to explore the relationships between Eulamprus and the monotypic genera Nangura and Gnypetoscincus, sections of two mitochondrial genes (ND4 and 16S rRNA) were sequenced and subjected to Bayesian phylogenetic analysis. This phylogenetic analysis supports recognition of the three species groups proposed for Eulamprus (murrayi, quoyii and tenuis) and indicates that this genus is paraphyletic, with Gnypetoscincus and Nangura being proximal to basal lineages of the tenuis group. To resolve these and broader problems of paraphyly, we suggest that each of the species groups from 'Eulamprus' should be recognised as a distinct genus. The phylogenetically and ecologically distinct water skinks of the quoyii group would be retained within Eulamprus and the diverse species of the tenuis group allocated to Concinnia. We suggest placing the monophyletic murrayi group, endemic to the rainforests of central eastern Australia, in a new genus ( yet to be formally described). The sequencing data also revealed the existence of a genetically divergent but morphologically cryptic lineage within E. murrayi and substantial diversity within E. quoyii. There is evidence for two major habitat shifts from rainforest towards drier habitats, one leading to the quoyii group and the second defining a clade of three species within the tenuis complex. These ecological transitions may represent adaptations to general drying across eastern Australia during the late Miocene - Pliocene. Each of the major areas of east coast tropical or subtropical rainforest contains multiple phylogenetically diverse endemic species, reflecting the long-term persistence and high conservation value of wet forest habitats in each area.
Resumo:
We examined effects of body size and temperature on swimming performance in juvenile estuarine crocodiles, Crocodylus porosus, over the size range of 30-110 cm total body length. Swimming performance, expressed as maximum sustainable swimming speed, was measured in a temperature- and flow-controlled swimming flume. Absolute sustainable swimming speed increased with body length, but length-specific swimming performance decreased as body length increased. Sustained swimming speed increased with temperature between 15degreesC and 23degreesC, remained constant between 23degrees and 33degreesC, and decreased as temperature rose above 33degreesC. Q(10)-values of swimming speed were 2.60 (+/- 0.091 SE) between 18degreesC and 23degreesC, and there were no differences in Q(10) between crocodiles of different sizes. The broad plateau of thermal independence in swimming speed observed in C. porosus may be of adaptive significance by allowing dispersal of juvenile animals at suboptimal body temperatures.
Resumo:
The mite family Stigmaeidae (Acari:Prostigmata) is of considerable importance in biological control, but its genera are often poorly defined and have never been subjected to cladistic analysis. Herein, we report the stigmaeid genus Ledermuelleriopsis Willmann from Australia for the first time, present a preliminary phylogenetic analysis that demonstrates that Eustigmaeus Berlese and Ledermuelleriopsis Willman are distinct, review the genus at the world level, and provide diagnostic characters of the adult females for each of the 21 known species. We also catalogue habitats, distributions and localities of holotypes. Four new species from Australia are described and illustrated: L. parvilla, sp. nov. from old dune sand, L. barbellata, sp. nov. from wet-sandy heath litter, and L. pustulosa, sp. nov. and L. claviseta, sp. nov. from dry eucalypt forest litter. A key to adult females of all known Ledermuelleriopsis species is provided. The Australian species and L. incisa Wood from New Zealand can be separated from all other members of the genus by a synapomorphy: the reduction of the number of setae on the aggenital shield to one pair. Results of a preliminary morphological cladistic analysis for those stigmaeid genera in which the larvae and adults of both sexes are known, indicate that Ledermuelleriopsis is basal to a clade containing Cheylostigmaeus Willman and Eustigmaeus.
Resumo:
The light-evoked release of acetylcholine (ACh) affects the responses of many retinal ganglion cells, in part via nicotinic acetylcholine receptors (nAChRs). nAChRs that contain beta2alpha3 neuronal nicotinic acetylcholine receptors have been identified and localized in the rabbit retina; these nAChRs are recognized by the monoclonal antibody mAb210. We have examined the expression of beta2alpha3 nAChRs by glycinergic amacrine cells in the rabbit retina and have identified different subpopulations of nicotinic cholinoceptive glycinergic cells using double and triple immunohistochemistry with quantitative analysis. Here we demonstrate that about 70% of the cholinoceptive amacrine cells in rabbit retina are glycinergic cells. At least three nonoverlapping subpopulations of mAb210 glycine-immunoreactive cells can be distinguished with antibodies against calretinin, calbindin, and gamma-aminobutyric acid (GABA)(A) receptors. The cholinergic cells in rabbit retina are thought to synapse only on other cholinergic cells and ganglion cells. Thus, the expression of beta2alpha3 nAChRs on diverse populations of glycinergic cells is puzzling. To explore this finding, the subcellular localization of beta2alpha3 was studied at the electron microscopic level. mAb210 immunoreactivity was localized on the dendrites of amacrines and ganglion cells throughout the inner plexiform layer, and much of the labeling was not associated with recognizable synapses. Thus, our findings indicate that ACh in the mammalian retina may modulate glycinergic circuits via extrasynaptic beta2alpha3 nAChRs. (C) 2002 Wiley-Liss, Inc.