223 resultados para body scaled information
Resumo:
Vps4p (End13p) is an AAA-family ATPase that functions in membrane transport through endosomes, sorting of soluble vacuolar proteins to the vacuole, and multivesicular body (MVB) sorting of membrane proteins to the vacuole lumen. In a yeast two-hybrid screen with Vps4p as bait we isolated VPS20 (YMR077c) and the novel open reading frame YLA181c, for which the name VTA1 has recently been assigned (Saccharomyces Genome Database). Vps4p directly binds Vps20p and Vta1p in vitro and binding is not dependent on ATP-conversely, Vps4p binding to Vps20p is partially sensitive to ATP hydrolysis. Both ATP binding [Vps4p-(K179A)] and ATP hydrolysis [Vps4p-(E233Q)] mutant proteins exhibit enhanced binding to Vps20p and Vta1p in vitro. The Vps4p-Vps20p interaction involves the coiled-coil domain of each protein, whereas the Vps4p-Vta1p interaction involves the (non-coiled-coil) C-terminus of each protein. Deletion of either VPS20 (vps20Delta) or VTA1 (vta1Delta) leads to similar class E Vps(-) phenotypes resembling those of vps4Delta, including carboxypeptidase Y (CPY) secretion, a block in ubiquitin-dependent MVB sorting, and a delay in both post-internalisation endocytic transport and biosynthetic transport to the vacuole. The vacuole resident membrane protein Sna3p (whose MVB sorting is ubiquitin-independent) does not appear to exit the class E compartment or reach the vacuole in cells lacking Vps20p, Vta1p or Vps4p, in contrast to other proteins whose delivery to the vacuole is only delayed. We propose that Vps20p and Vta1p regulate Vps4p function in vivo.
Resumo:
The use of thermodilution and other methods of monitoring in dogs during surgery and critical care was evaluated. Six Greyhounds were anaesthetised and then instrumented by placing a thermodilution catheter into the pulmonary artery via the jugular vein. A catheter in the dorsal pedal artery also permitted direct measurement of arterial pressures. Core body temperature (degreesC) and central venous pressure (mmHg) were measured, while cardiac output (mL/min/kg) and mean arterial pressure (mmHg) were calculated. A mid-line surgical incision was performed and the physiological parameters were monitored for a total of two hours. All physiological parameters generally declined, although significant increases (P<0.05) were noted for cardiac output following surgical incision. Central venous pressure was maintained at approximately 0mmHg by controlling an infusion of sterile saline. Core body temperature decreased from 37.1+/-0.6degreesC (once instrumented) to 36.6+/-0.60degreesC (at the end of the study), despite warming using heating pads. Physiological parameters indicative of patient viability will generally decline during surgery without intervention. This study describes an approach that can be undertaken in veterinary hospitals to accurately monitor vital signs in surgical and critical care patients.
Resumo:
Actively warming patients during surgery is considered the best method of preventing inadvertent hypothermia due to multiple causes: anaesthetic depression of the hypothalamic thermoregulatory centre, cutaneous vasodilatation, reduction of heat production by skeletal muscles, cold intravenous fluid administration and heat loss from opened body cavities. To compare the effects of active peripheral skin warming and trunk warming on body temperature during surgery, 15 dogs undergoing ovariohysterectomy were studied using a prospective randomised trial design. Dogs were randomised into two groups: one group was warmed by compress leg pads (n=7) on limbs and the other group by a circulating warm water mattress (n=8), applied to the trunk. The rectal, oesophageal and room temperatures and relative humidity were measured. The results showed that the compress leg pads (active peripheral warming) were significantly (P
Writing the body of the mother: Narrative moments in Tsushima Yuko, Ariyoshi Sawako and Enchi Fumiko
Resumo:
This discussion argues the transformative potential inherent in the corporeal experience of motherhood as represented in selected textual moments of Japanese narrative. Narratives that address the experiences of the body of the mother are informed and given substance by an intense physicality, and thus have the potential to contest processes of social inscription in addition to suggesting alternative possibilities for all readers, not just those occupying an embodied maternal space. The discussion features brief events from the work of three writers who have written as mothers: Tsushima Y(u)macrko, Ariyoshi Sawako and Enchi Fumiko. In Yama o hashiru onna (1980; translated as Woman Running in the Mountains, 1991), Tsushima Y(u)macrko invites the reader to consider the embodied response to light of Takiko, a young pregnant woman. Emiko, the protagonist of Hishoku (Without Colour, 1967) by Ariyoshi Sawako, is the Japanese wife of an African American and has just given birth to a child. The daughter protagonist in Enchi Fumiko's 'Kami' ('Hair', 1957) operates a hairdressing business that is viable only with her mother's unpaid labour. The narratives are read through a matrix of post-structuralist theories of embodiment, drawing on the work of writers such as Julia Kristeva, Luce Irigaray and Elizabeth Grosz.
Resumo:
We examined effects of body size and temperature on swimming performance in juvenile estuarine crocodiles, Crocodylus porosus, over the size range of 30-110 cm total body length. Swimming performance, expressed as maximum sustainable swimming speed, was measured in a temperature- and flow-controlled swimming flume. Absolute sustainable swimming speed increased with body length, but length-specific swimming performance decreased as body length increased. Sustained swimming speed increased with temperature between 15degreesC and 23degreesC, remained constant between 23degrees and 33degreesC, and decreased as temperature rose above 33degreesC. Q(10)-values of swimming speed were 2.60 (+/- 0.091 SE) between 18degreesC and 23degreesC, and there were no differences in Q(10) between crocodiles of different sizes. The broad plateau of thermal independence in swimming speed observed in C. porosus may be of adaptive significance by allowing dispersal of juvenile animals at suboptimal body temperatures.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, nonuniform static magnetic fields outside the central imaging region, in which the movement of the body may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced electric fields and currents in the patient when moving into the MRI scanner and also for head motion at various positions in the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively shielded 4T magnet system are used and the body model projected through the field profile with a range of velocities. The simulation shows that it possible to induce electric fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are extrapolated to very high field strengths and tabulated data shows the expected induced currents and fields with both movement velocity and field strength. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We investigated how the relative direction of limb movements in external space (iso- and non-isodirectionality), muscular constraints (the relative timing of homologous muscle activation) and the egocentric frame of reference (moving simultaneously toward/away the longitudinal axis of the body) contribute to the stability of coordinated movements. In the first experiment, we attempted to determine the respective stability of isodirectional and non-isodirectional movements in between-persons coordination. In a second experiment, we determined the effect of the relative direction in external space, and of muscular constraints, on pattern stability during a within-person bimanual coordination task. In the third experiment we dissociated the effects on pattern stability of the muscular constraints, relative direction and egocentric frame of reference. The results showed that (1) simultaneous activation of homologous muscles resulted in more stable performance than simultaneous activation of non-homologous muscles during within-subject coordination, and that (2) isodirectional movements were more stable than non-isodirectional movements during between-persons coordination, confirming the role of the relative direction of the moving limbs in the stability of bimanual coordination. Moreover, the egocentric constraint was to some extent found distinguishable from the effect of the relative direction of the moving limbs in external space, and from the effect of the relative timing of muscle activation. In summary, the present study showed that relative direction of the moving limbs in external space and muscular constraints may interact either to stabilize or destabilize coordination patterns. (C) 2003 Published by Elsevier B.V.
Resumo:
Theory supports the use of a segmental methodology (SM) for bioimpedance analysis (BIA) of body water (BW). However, previous studies have generally failed to show a significant improvement when the SM is used in place of a whole-body methodology. A pilot study was conducted to compare the two methodologies in control and overweight subjects. BW of each subject was measured by D2O dilution and also estimated from BIA measurements. Bland and Altman analysis was used to compare the two values of BW. The SM resulted in a small but not significantly improved limits of agreement of measured and BIA estimated BW (psimilar to0.3). This and the results of previous studies suggest that improvements in prediction of BW obtained from application of the SM may be intrinsically small and may not justify the additional effort in application.
Resumo:
Translabial ultrasound is increasingly being used for the assessment of women presenting with pelvic floor dysfunction and incontinence (1,2). However, there is little information on normal values for bladder neck descent, with the two available studies disagreeing widely (3,4). No data has so far been published on mobility of the central and posterior compartment which can now also be assessed by ultrasound (5). This study presents normal values for urethral, bladder, cervical and rectal mobility in a cohort of young, stress continent, nulliparous nonpregnant women. Methods 118 nonpregnant nulliparous Caucasian women between 18 and 23 years of age were recruited for an ongoing twin study of pelvic floor function. Translabial ultrasound assessment of pelvic organ mobility was undertaken supine and after bladder emptying (6,7). The best of at least three effective Valsalva manoeuvres was used for evaluation, with no attempts at standardization of Valsalva pressure. Parameters of anterior compartment mobility were obtained by the use of on-screen calipers; cervical and rectal descent were evaluated on printouts. All examinations were carried out under direct supervision of the first author or by personnel trained by him for at least 100 consecutive assessments. Results The median age of participants in this study was 20 (range 18- 23). Mean body mass index was 23 (range 16.9- 36.7). Of 118 women, 2 were completely unable to perform a Valsalva manoeuvre despite repeated efforts at teaching and were excluded from analysis, as were ten women who complained of urinary stress incontinence, leaving 106 datasets. Average measurements for the parameters ‘retrovesical angle at rest’ (RVA-R) and on Valsalva (RVA-S), urethral rotation, bladder neck mobility, cysto-cele descent, cervical descent and descent of the rectal ampulla are given in Table 1.
Resumo:
Over the past decade or so, there has been increasing demand for greater clarity about the major causes of disease and injury, how these differentially affect populations, and how they are changing. In part, this demand has been motivated by resource constraints and a realisation that better health is possible with more informed allocation of resources. At the same time, there has been a change in the way population health and its determinants are quantified, with a much closer integration of the quantitative population sciences (such as epidemiology, demography and health economics) to strengthen and broaden the evidence base for healthcare policy.