229 resultados para biological models
Resumo:
Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET scanners, little use is made of earlier microvascular research in the compartmental models, which have become the standard model by which the vast majority of dynamic PET data are analysed. However, modern PET scanners provide data with a sufficient temporal resolution and good counting statistics to allow estimation of parameters in models with more physiological realism. We explore the standard compartmental model and find that incorporation of blood flow leads to paradoxes, such as kinetic rate constants being time-dependent, and tracers being cleared from a capillary faster than they can be supplied by blood flow. The inability of the standard model to incorporate blood flow consequently raises a need for models that include more physiology, and we develop microvascular models which remove the inconsistencies. The microvascular models can be regarded as a revision of the input function. Whereas the standard model uses the organ inlet concentration as the concentration throughout the vascular compartment, we consider models that make use of spatial averaging of the concentrations in the capillary volume, which is what the PET scanner actually registers. The microvascular models are developed for both single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Today, the standard approach for the kinetic analysis of dynamic PET studies is compartment models, in which the tracer and its metabolites are confined to a few well-mixed compartments. We examine whether the standard model is suitable for modern PET data or whether theories including more physiologic realism can advance the interpretation of dynamic PET data. A more detailed microvascular theory is developed for intravascular tracers in single-capillary and multiple-capillary systems. The microvascular models, which account for concentration gradients in capillaries, are validated and compared with the standard model in a pig liver study. Methods: Eight pigs underwent a 5-min dynamic PET study after O-15-carbon monoxide inhalation. Throughout each experiment, hepatic arterial blood and portal venous blood were sampled, and flow was measured with transit-time flow meters. The hepatic dual-inlet concentration was calculated as the flow-weighted inlet concentration. Dynamic PET data were analyzed with a traditional single-compartment model and 2 microvascular models. Results: Microvascular models provided a better fit of the tissue activity of an intravascular tracer than did the compartment model. In particular, the early dynamic phase after a tracer bolus injection was much improved. The regional hepatic blood flow estimates provided by the microvascular models (1.3 +/- 0.3 mL min(-1) mL(-1) for the single-capillary model and 1.14 +/- 0.14 min(-1) mL(-1) for the multiple-capillary model) (mean +/- SEM mL of blood min(-1) mL of liver tissue(-1)) were in agreement with the total blood flow measured by flow meters and normalized to liver weight (1.03 +/- 0.12 mL min(-1) mL(-1)). Conclusion: Compared with the standard compartment model, the 2 microvascular models provide a superior description of tissue activity after an intravascular tracer bolus injection. The microvascular models include only parameters with a clear-cut physiologic interpretation and are applicable to capillary beds in any organ. In this study, the microvascular models were validated for the liver and provided quantitative regional flow estimates in agreement with flow measurements.
Resumo:
Many large-scale stochastic systems, such as telecommunications networks, can be modelled using a continuous-time Markov chain. However, it is frequently the case that a satisfactory analysis of their time-dependent, or even equilibrium, behaviour is impossible. In this paper, we propose a new method of analyzing Markovian models, whereby the existing transition structure is replaced by a more amenable one. Using rates of transition given by the equilibrium expected rates of the corresponding transitions of the original chain, we are able to approximate its behaviour. We present two formulations of the idea of expected rates. The first provides a method for analysing time-dependent behaviour, while the second provides a highly accurate means of analysing equilibrium behaviour. We shall illustrate our approach with reference to a variety of models, giving particular attention to queueing and loss networks. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background: There is ample evidence of important symptomatic efficacy of tumour necrosis factor alpha (TNFalpha) inhibition in ankylosing spondylitis (AS). Moreover, studies suggest that anti-TNF could be considered as the first disease controlling antirheumatic treatment (DC-ART) for AS. Objective: To determine precisely which patients with AS are most likely to benefit from anti-TNFalpha treatment because of the cost and possible long term side effects of such treatment. Methods: Assessment in Ankylosing Spondylitis (ASAS) members were asked to use a Delphi technique to name the characteristics of patients with AS for whom they would start DC-ART, in three different clinical presentations (isolated axial involvement, peripheral arthritis, enthesitis). Results: Among the 62 invited ASAS members, more than 50% actively participated in the four phases of definition according to the Delphi technique. For each of the three clinical presentations, a combination of five to six domains was proposed, with an evaluation instrument and a cut off point defining a minimum level of activity for each domain. Conclusion: This study provides a profile for a patient with AS for considering initiation of biological agents that reflects the opinion of the ASAS members, using a Delphi exercise. Further studies are required to assess their relevance and their consistency with clinical practice.
Resumo:
One of the most important advantages of database systems is that the underlying mathematics is rich enough to specify very complex operations with a small number of statements in the database language. This research covers an aspect of biological informatics that is the marriage of information technology and biology, involving the study of real-world phenomena using virtual plants derived from L-systems simulation. L-systems were introduced by Aristid Lindenmayer as a mathematical model of multicellular organisms. Not much consideration has been given to the problem of persistent storage for these simulations. Current procedures for querying data generated by L-systems for scientific experiments, simulations and measurements are also inadequate. To address these problems the research in this paper presents a generic process for data-modeling tools (L-DBM) between L-systems and database systems. This paper shows how L-system productions can be generically and automatically represented in database schemas and how a database can be populated from the L-system strings. This paper further describes the idea of pre-computing recursive structures in the data into derived attributes using compiler generation. A method to allow a correspondence between biologists' terms and compiler-generated terms in a biologist computing environment is supplied. Once the L-DBM gets any specific L-systems productions and its declarations, it can generate the specific schema for both simple correspondence terminology and also complex recursive structure data attributes and relationships.
Resumo:
Blast fragmentation can have a significant impact on the profitability of a mine. An optimum run of mine (ROM) size distribution is required to maximise the performance of downstream processes. If this fragmentation size distribution can be modelled and controlled, the operation will have made a significant advancement towards improving its performance. Blast fragmentation modelling is an important step in Mine to Mill™ optimisation. It allows the estimation of blast fragmentation distributions for a number of different rock mass, blast geometry, and explosive parameters. These distributions can then be modelled in downstream mining and milling processes to determine the optimum blast design. When a blast hole is detonated rock breakage occurs in two different stress regions - compressive and tensile. In the-first region, compressive stress waves form a 'crushed zone' directly adjacent to the blast hole. The second region, termed the 'cracked zone', occurs outside the crush one. The widely used Kuz-Ram model does not recognise these two blast regions. In the Kuz-Ram model the mean fragment size from the blast is approximated and is then used to estimate the remaining size distribution. Experience has shown that this model predicts the coarse end reasonably accurately, but it can significantly underestimate the amount of fines generated. As part of the Australian Mineral Industries Research Association (AMIRA) P483A Mine to Mill™ project, the Two-Component Model (TCM) and Crush Zone Model (CZM), developed by the Julius Kruttschnitt Mineral Research Centre (JKMRC), were compared and evaluated to measured ROM fragmentation distributions. An important criteria for this comparison was the variation of model results from measured ROM in the-fine to intermediate section (1-100 mm) of the fragmentation curve. This region of the distribution is important for Mine to Mill™ optimisation. The comparison of modelled and Split ROM fragmentation distributions has been conducted in harder ores (UCS greater than 80 MPa). Further work involves modelling softer ores. The comparisons will be continued with future site surveys to increase confidence in the comparison of the CZM and TCM to Split results. Stochastic fragmentation modelling will then be conducted to take into account variation of input parameters. A window of possible fragmentation distributions can be compared to those obtained by Split . Following this work, an improved fragmentation model will be developed in response to these findings.
Resumo:
A new algebraic Bethe ansatz scheme is proposed to diagonalize classes of integrable models relevant to the description of Bose-Einstein condensation in dilute alkali gases. This is achieved by introducing the notion of Z-graded representations of the Yang-Baxter algebra. (C) 2003 American Institute of Physics.
Resumo:
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.
Resumo:
Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was
Resumo:
In the previous two papers in this three-part series, we have examined visual pigments, ocular media transmission, and colors of the coral reef fish of Hawaii. This paper first details aspects of the light field and background colors at the microhabitat level on Hawaiian reefs and does so from the perspective and scale of fish living on the reef. Second, information from all three papers is combined in an attempt to examine trends in the visual ecology of reef inhabitants. Our goal is to begin to see fish the way they appear to other fish. Observations resulting from the combination of results in all three papers include the following. Yellow and blue colors on their own are strikingly well matched to backgrounds on the reef such as coral and bodies of horizontally viewed water. These colors, therefore, depending on context, may be important in camouflage as well as conspicuousness. The spectral characteristics of fish colors are correlated to the known spectral sensitivities in reef fish single cones and are tuned for maximum signal reliability when viewed against known backgrounds. The optimal positions of spectral sensitivity in a modeled dichromatic visual system are generally close to the sensitivities known for reef fish. Models also predict that both UV-sensitive and red-sensitive cone types are advantageous for a variety of tasks. UV-sensitive cones are known in some reef fish, red-sensitive cones have yet to be found. Labroid colors, which appear green or blue to us, may he matched to the far-red component of chlorophyll reflectance for camouflage. Red cave/hole dwelling reef fish are relatively poorly matched to the background they are often viewed against but this may be visually irrelevant. The model predicts that the task of distinguishing green algae from coral is optimized with a relatively long wavelength visual pigment pair. Herbivorous grazers whose visual pigments are known possess the longest sensitivities so far found. Labroid complex colors are highly contrasting complementary colors close up but combine, because of the spatial addition, which results from low visual resolution, at distance, to match background water colors remarkably well. Therefore, they are effective for simultaneous communication and camouflage.
Resumo:
Despite the strong influence of plant architecture on crop yield, most crop models either ignore it or deal with it in a very rudimentary way. This paper demonstrates the feasibility of linking a model that simulates the morphogenesis and resultant architecture of individual cotton plants with a crop model that simulates the effects of environmental factors on critical physiological processes and resulting yield in cotton. First the varietal parameters of the models were made concordant. Then routines were developed to allocate the flower buds produced each day by the crop model amongst the potential positions generated by the architectural model. This allocation is done according to a set of heuristic rules. The final weight of individual bolls and the shedding of buds and fruit caused by water, N, and C stresses are processed in a similar manner. Observations of the positions of harvestable fruits, both within and between plants, made under a variety of agronomic conditions that had resulted in a broad range of plant architectures were compared to those predicted by the model with the same environmental inputs. As illustrated by comparisons of plant maps, the linked models performed reasonably well, though performance of the fruiting point allocation and shedding algorithms could probably be improved by further analysis of the spatial relationships of retained fruit. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We present two integrable spin ladder models which possess a general free parameter besides the rung coupling J. The models are exactly solvable by means of the Bethe ansatz method and we present the Bethe ansatz equations. We analyze the elementary excitations of the models which reveal the existence of a gap for both models that depends on the free parameter. (C) 2003 American Institute of Physics.
Resumo:
Matrix metalloproteinases (MMPs) are a family of enzymes implicated in the degradation and remodeling of extracellular matrix and in vascularization. They are also involved in pathologic processes such as tumor invasion and metastasis in experimental cancer models and in human malignancies. We used gelatin zymography and inummohistochemistry to determine whether MMP-2 and MMP-9 are present in canine tumors and normal tissues and whether MMP production correlates with clinicopathologic parameters of prognostic importance. High levels of pro-MMP-9, pro-MMP-2, and active MMP-2 were detected in most canine tumors. Significantly higher MMP levels were measured in canine tumors than in nontumors, malignancies had higher MMP levels than benign tumors, and sarcomas had higher active MMP-2 than carcinomas. Cartilaginous tumors produced higher MMP levels than did nonsarcomatous malignancies, benign tumors, and normal tissues, and significantly greater MMP-2 than osteosarcomas and fibrosarcomas. Pro-MMP-9 production correlated with the histologic grade of osteosarcomas. The 62-kd form of active MMP-2 was detected only in high-grade, p53-positive, metastatic malignancies. Zymography proved to be a sensitive and quantitative technique for the assessment of MMP presence but has the limitation of requiring fresh tissue; inummohistochemistry is qualitative and comparatively insensitive but could be of value in archival studies. MMP presence was shown in a range of canine tumors, and their link to tumor type and grade was demonstrated for the first time. This study will allow a substantially improved evaluation of veterinary cancer patients and provides baseline information necessary for the design of clinical trials targeting MMPs.