215 resultados para Worst-case dimensioning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to 1) examine the relationship between laboratory-based measures and high-intensity ultraendurance (HIU) performance during an intermittent 24-h relay ultraendurance mountain bike race (similar to20 min cycling, similar to60min recovery), and 2) examine physiological and performance based changes throughout the HIU event. Prior to the HIU event, four highly-trained male cyclists (age = 24.0 +/- 2.1 yr; mass = 75.0 +/- 2.7 kg; (V)over dot O-2peak = 70 +/- 3 ml.kg(-1).min(-1)) performed 1) a progressive exercise test to determine peak Volume of oxygen uptake ((V)over dot O-2peak), peak power output (PPO), and ventilatory threshold (T-vent), 2) time-to-fatigue tests at 100% (TF100) and 150% of PPO (TF150), and 3) a laboratory simulated 40-km time trial (TT40). Blood lactate (Lac(-)), haematocrit and haemoglobin were measured at 6-h intervals throughout the HIU event, while heart rate (HR) was recorded continuously. Intermittent HIU performance, performance HR, recovery HR, and Lac declined (P < 0.05), while plasma volume expanded (P < 0.05) during the HIU event. TF100 was related to the decline in lap time (r = -0.96; P < 0.05), and a trend (P = 0.081) was found between TF150 and average intermittent HIU speed (r = 0.92). However, other measures (V)over dot O-2peak, PPO, T-vent, and TT40) were not related to HIU performance. Measures of high-intensity endurance performance (TF100, TF150) were better predictors of intermittent HIU performance than traditional laboratory-based measures of aerobic capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impacts of climate change in the potential distribution and relative abundance of a C3 shrubby vine, Cryptostegia grandiflora, were investigated using the CLIMEX modelling package. Based upon its current naturalised distribution, C. grandiflora appears to occupy only a small fraction of its potential distribution in Australia under current climatic conditions; mostly in apparently sub-optimal habitat. The potential distribution of C. grandiflora is sensitive towards changes in climate and atmospheric chemistry in the expected range of this century, particularly those that result in increased temperature and water use efficiency. Climate change is likely to increase the potential distribution and abundance of the plant, further increasing the area at risk of invasion, and threatening the viability of current control strategies markedly. By identifying areas at risk of invasion, and vulnerabilities of control strategies, this analysis demonstrates the utility of climate models for providing information suitable to help formulate large-scale, long-term strategic plans for controlling biotic invasions. The effects of climate change upon the potential distribution of C. grandiflora are sufficiently great that strategic control plans for biotic invasions should routinely include their consideration. Whilst the effect of climate change upon the efficacy of introduced biological control agents remain unknown, their possible effect in the potential distribution of C. grandiflora will likely depend not only upon their effects on the population dynamics of C. grandiflora, but also on the gradient of climatic suitability adjacent to each segment of the range boundary.