234 resultados para Myriad Genetics,
Resumo:
When the availability of sperm limits female reproductive success, competition for sperm, may be an important broker of sexual selection. This is because sperm limitation can increase the variance in female reproductive success, resulting in strong selection on females to compete for limited fertilization opportunities. Sperm limitation is probably common in broadcast-spawning marine invertebrates, making these excellent candidates for investigating scramble competition between broods of eggs and its consequences for female reproductive success. Here, we report our findings from a series of experiments that investigate egg competition in the sessile, broadcast-spawning polychaete Galeolaria caespitosa. We initially tested whether the order in which eggs encounter sperm affects their fertilization success at two ecologically relevant current regimes. We used a split-clutch-split-ejaculate technique to compare the fertilization success of eggs from individual females that had either first access (competition-free treatment) or second access (egg competition treatment) to a batch of sperm. We found that fertilization success depended on the order in which eggs accessed sperm; eggs that were assigned to the competition-free treatment exhibited significantly higher fertilization rates than those assigned to the egg competition treatment at both current speeds. In subsequent experiments we found that prior exposure of sperm to eggs significantly reduced both the quantity and quality of sperm available to fertilize a second clutch of eggs, resulting in reductions in fertilization success at high and low sperm concentrations. These findings suggest that female traits that increase the likelihood of sperm-egg interactions (e.g. egg size) will respond to selection imposed by egg competition.
Resumo:
Background: Microarray transcript profiling has the potential to illuminate the molecular processes that are involved in the responses of cattle to disease challenges. This knowledge may allow the development of strategies that exploit these genes to enhance resistance to disease in an individual or animal population. Results: The Bovine Innate Immune Microarray developed in this study consists of 1480 characterised genes identified by literature searches, 31 positive and negative control elements and 5376 cDNAs derived from subtracted and normalised libraries. The cDNA libraries were produced from 'challenged' bovine epithelial and leukocyte cells. The microarray was found to have a limit of detection of 1 pg/mu g of total RNA and a mean slide-to-slide correlation co-efficient of 0.88. The profiles of differentially expressed genes from Concanavalin A ( ConA) stimulated bovine peripheral blood lymphocytes were determined. Three distinct profiles highlighted 19 genes that were rapidly up-regulated within 30 minutes and returned to basal levels by 24 h; 76 genes that were upregulated between 2 - 8 hours and sustained high levels of expression until 24 h and 10 genes that were down-regulated. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray analysis. The results indicate that there is a dynamic process involving gene activation and regulatory mechanisms re-establishing homeostasis in the ConA activated lymphocytes. The Bovine Innate Immune Microarray was also used to determine the cross-species hybridisation capabilities of an ovine PBL sample. Conclusion: The Bovine Innate Immune Microarray has been developed which contains a set of well-characterised genes and anonymous cDNAs from a number of different bovine cell types. The microarray can be used to determine the gene expression profiles underlying innate immune responses in cattle and sheep.
Resumo:
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.
Resumo:
A polymorphism of the dopamine transporter gene (DAT1, 10-repeat) is associated with attention-deficit hyperactivity disorder (ADHD) and has been linked to an enhanced response to methylphenidate (MPH). One aspect of the attention deficit in ADHD includes a subtle inattention to left space, resembling that seen after right cerebral hemisphere damage. Since left-sided inattention in ADHD may resolve when treated with MPH, we asked whether left-sided inattention in ADHD was related to DAT1 genotype and the therapeutic efficacy of MPH. A total of 43 ADHD children and their parents were genotyped for the DAT1 30 variable number of tandem repeats polymorphism. The children performed the Landmark Test, a well-validated measure yielding a spatial attentional asymmetry index ( leftward to rightward attentional bias). Parents rated their child's response to MPH retrospectively using a three-point scale ( no, mediocre or very good response). Additionally, parents used a symptom checklist to rate behavior while on and off medication. A within-family control design determined whether asymmetry indices predicted biased transmission of 10-repeat parental DAT1 alleles and/or response to MPH. It was found that left-sided inattention predicted transmission of the 10-repeat allele from parents to probands and was associated with the severity of ADHD symptomatology. Children rated as achieving a very good response to MPH displayed left-sided inattention, while those rated as achieving a poorer response did not. Our results suggest a subgroup of children with ADHD for whom the 10-repeat DAT1 allele is associated with left-sided inattention. MPH may be most efficacious in this group because it ameliorates a DAT1-mediated hypodopaminergic state.
Resumo:
Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.
Resumo:
This paper is a foreword to a series of papers commissioned on 'the impact of science on the beef industry', where the Beef CRC-related collaborative scientific work of Professor Bernard Michael Bindon will be reviewed. These papers will be presented in March 2006, as part of a 'festschrift' to recognise his wider contributions to the Australian livestock industries for over 40 years. Bindon's career involved basic and applied research in many areas of reproductive physiology, genetics, immunology, nutrition, meat science and more recently genomics, in both sheep and cattle. Together with his collaborators, he made large contributions to animal science by improving the knowledge of mechanisms regulating reproductive functions and in elucidating the physiology and genetics of high fecundity livestock. His collaborative studies with many colleagues of the reproductive biology and genetics of the Booroola Merino were amongst the most extensive ever conducted on domestic livestock. He was instrumental in the development of immunological techniques to control ovulation rate and in examining the application of these and other techniques to increase beef cattle reproductive output. This paper tracks his investigations and achievements both within Australia and internationally. In the later stages of his career he was the major influence in attracting a large investment in Cooperative Research Centres for the Australian cattle industry, in which he directed a multi-disciplinary approach to investigate, develop and disseminate science and technology to improve commercial cattle productivity.
Resumo:
Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Resumo:
Cells of the mononuclear phagocyte lineage possess receptors for macrophage colony-stimulating factor (CSF-1) encoded by the c-fms protooncogene and respond to CSF-1 with increased survival, growth, differentiation, and reversible changes in function. The c-fms gene is itself a macrophage differentiation marker. In whole mount analyses of mRNA expression in embryos, c-fms is expressed at very high levels on placental trophoblasts. It is detectable on individual cells in the yolk sac around 8.5 to 9 days postcoitus, appears on isolated cells in the head of the embryo around 9.5 dpc, and appears on numerous cells throughout the embryo by day 10.5. The extent of c-fms expression is much greater than for other macrophage-specific genes including lysozyme and a macrophage-specific protein tyrosine phosphatase. Our studies of the cis-acting elements of the c-fms promoter have indicated a key role for collaboration between the macrophage-specific transcription factor, Pu.1, which functions in determining the site of transcription initiation, and other members of the Ets transcription factor family. This is emerging as a common pattern in macrophage-specific promoters. We have shown that two PU box elements alone can function as a macrophage-specific promoter. The activity of both the artifical promoter and the c-fms promoter is activated synergistically by coexpression of Pu.1 and another Ets factor, c-Ets-2. A 3.5kb c-fms exon 2 promoter (but not the 300bp proximal promoter) is also active in a wide diversity of tumor cell lines. The interesting exception is the melanoma cell line K1735, in which the promoter is completely shut down and expression of c-fms causes growth arrest and cell death. The activity of the exon 2 promoter in these nonmacrophages is at least as serum responsive as the classic serum-responsive promoter of the c-fos gene. It is further inducible in nonmacrophages by coexpression of the c-fms product. Unlike other CSF-1/c-fms-responsive promoters, the c-fms promoter is not responsive to activated Ras even when c-Ets-2 is coexpressed. In most lines, production of full length c-fms is prevented by a downstream intronic terminator, but in Lewis lung carcinoma, read-through does occur, and expression of both c-fms and other macrophage-specific genes such as lysozyme and urokinase becomes detectable in conditions of serum deprivation. (C) 1997 Wiley-Liss, Inc.
Resumo:
Homocystinuria, due to a deficiency of the enzyme cystathionine beta-synthase (CBS), is an inborn error of sulphur-amino acid metabolism, This is an autosomal recessive disease which results in hyperhomocysteinaemia and a wide range of clinical features, including optic lens dislocation, mental retardation, skeletal abnormalities and premature thrombotic events, We report the identification of 5 missense mutations in the protein-coding region of the CBS gene from 3 patients with pyridoxine-nonresponsive homocystinuria. Reverse-transcription PCR was used to amplify CBS cDNA from each patient and the coding region was analysed by direct sequencing, The mutations detected included 3 novel (1058C --> T, 992C --> A and 1316G --> A) and 2 previously identified (430G --> A and 833C --> T) base alterations in the CBS cDNA, Each of these mutations predicts a single amino acid substitution in the CBS polypeptide, Appropriate cassettes of patient CBS cDNA, containing each of the above defined mutations, were used to replace the corresponding cassettes of normal CBS cDNA sequence within the bacterial expression vector pT7-7. These recombinant mutant and normal CBS constructs were expressed in Escherichia coli cells and the catalytic activities of the mutant proteins were compared with normal. All of the mutant proteins exhibited decreased catalytic activity in vitro, which confirmed the association between the individual mutation and CBS dysfunction in each patient.
Resumo:
In this paper we describe the assembly and restriction map of a 1.05-Mb cosmid contig spanning the candidate region for familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation localized to 16p13.3. Using a combination of cosmid walking and screening for P1, PAC, BAG, and YAC clones, we have generated a contig of genomic clones spanning similar to 1050 kb that contains the FMF critical region. The map consists of 179 cosmid, 15 P1, 10 PAC, 3 BAG, and 17 YAC clones, anchored by 27 STS markers. Eight additional STSs have been developed from the similar to 700 kb immediately centromeric to this genomic region. Five of the 35 STSs are microsatellites that have not been previously reported. NotI and EcoRI mapping of the overlapping cosmids, hybridization of restriction fragments from cosmids to one another, and STS analyses have been used to validate the assembly of the contig. Our contig totally subsumes the 250-kb interval recently reported, by founder haplotype analysis, to contain the FMF gene. Thus, our high-resolution clone map provides an ideal resource for transcriptional mapping toward the eventual identification of this disease gene. (C) 1997 Academic Press.
Resumo:
In both animal models and humans, the first and obligatory step in the activation of arylamines is N-hydroxylation. This pathway is primarily mediated by the phase-I enzymes CYP1A1, CYP1A2 and CYP4B1. In the presence of flavonoids such as alpha-naphthoflavone and flavone, both CYP3A4 and CYP3A5 have also been shown to play a minor role in the activation of food-derived heterocyclic amines. The further activation of N-hydroxyarylamines by phase-II metabolism can involve both N,O-acetylation and N,O-sulfonation catalyzed by N-acetyltransferases (NAT1 and NAT2) and sulfotransferases, respectively. Using an array of techniques, we have been unable to detect constitutive CYP1A expression in any segments of the human gastrointestinal tract. This is in contrast to the rabbit where CYP1A1 protein was readily detectable on immunoblots in microsomes prepared from the small intestine. In humans, CYP3A3/3A4 expression was detectable in the esophagus and all segments of the small intestine. Northern blot analysis of eleven human colons showed considerable heterogeneity in CYP3A mRNA between individuals, with the presence of two mRNA species in same subjects. Employing the technique of hybridization histochemistry (also known as in situ hybridization), CYP4B1 expression was observed in some human colons but not in the liver or the small intestine. Hybridization histochemistry studies have also demonstrated variable NAT1 and NAT2 expression in the human gastrointestinal tract. NAT1 and NAT2 mRNA expression was detected in the human liver, small intestine, colon, esophagus, bladder, ureter, stomach and lung. Using a general aryl sulfotransferase riboprobe (HAST1), we have demonstrated marked sulfotransferase expression in the human colon, small intestine, lung, stomach and liver. These studies demonstrate that considerable variability exists in the expression of enzymes involved in the activation of aromatic amines in human tissues. The significance of these results in relation to a role for heterocyclic amines in colon cancer is discussed.