235 resultados para Dual compressible hybrid quantum secret sharing schemes
Resumo:
We explore the sensitivity of an interferometer based on a quantum circuit for coherent states. We show that its sensitivity is at the Heisenberg limit. Moreover, we show that this arrangement can measure very small length intervals.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitary operations. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd [Phys. Rev. A 65, 040301(R) (2002)] provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems are qudits, that is, have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.
Resumo:
We discuss techniques for producing, manipulating, and measuring qubits encoded optically as vacuum- and single-photon states. We show that a universal set of nondeterministic gates can be constructed using linear optics and photon counting. We investigate the efficacy of a test gate given realistic detector efficiencies.
Resumo:
Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-NOT, are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. We present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this result for systems of arbitrary finite dimension has been provided by Brylinski and Brylinski; however, their proof relies on a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical.
Resumo:
We introduce a model of computation based on read only memory (ROM), which allows us to compare the space-efficiency of reversible, error-free classical computation with reversible, error-free quantum computation. We show that a ROM-based quantum computer with one writable qubit is universal, whilst two writable bits are required for a universal classical ROM-based computer. We also comment on the time-efficiency advantages of quantum computation within this model.
Resumo:
This Letter presents a simple formula for the average fidelity between a unitary quantum gate and a general quantum operation on a qudit, generalizing the formula for qubits found by Bowdrey et al. [Phys. Lett. A 294 (2002) 258]. This formula may be useful for experimental determination of average gate fidelity. We also give a simplified proof of a formula due to Horodecki et al. [Phys. Rev. A 60 (1999) 1888], connecting average gate fidelity to entanglement fidelity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quantum device. It allows the complete reconstruction of the state produced from a given input into the device. From this reconstructed density matrix, relevant quantum information quantities such as the degree of entanglement and entropy can be calculated. Generally, orthogonal measurements have been discussed for this tomographic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes. First, we show how nonorthogonal measurements allow the reconstruction of the state of the system provided the measurements span the Hilbert space. We then detail how quantum-state tomography can be performed for multiqudits with a specific example illustrating how to achieve this in one- and two-qutrit systems.
Resumo:
Parrondo's paradox arises when two losing games are combined to produce a winning one. A history-dependent quantum Parrondo game is studied where the rotation operators that represent the toss of a classical biased coin are replaced by general SU(2) operators to transform the game into the quantum domain. In the initial state, a superposition of qubits can be used to couple the games and produce interference leading to quite different payoffs to those in the classical case. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Passive techniques as an alternative to artificial cooling can bring important energy, environmental, financial, operational and qualitative benefits. However, regions such as the wet tropics can reach high levels of thermal stress in which passive means alone are unable to provide appropriate thermal comfort standards for some parts of the year. Despite a great accumulation of empirical information on the passive performance of houses for either free-running or conditioned modes, very little work has been done on the thermal performance of buildings that can operate with a mixed-running strategy in warm-humid climates. Buildings with such design features are able to balance the needs for comfort, privacy, and energy efficiency during different periods of the year. As free-running and conditioned modes are believed by many to be 'opposite' approaches, and have been presented as separate strategies, this paper demonstrates that not all parameters are directly opposite and a possible dual-mode integrated operation can be used for warm-humid locations for maximum comfort and minimum energy requirements. For this purpose, simulation runs using ESP-R (University of Strathclyde, ESRU, UK) were based on the climate data of Darwin (Australia) and on the ventilation styles of the house: free running and conditioned. Design features applicable to both, i.e. for a dual mode operation could be identified and the differences between conditioned and free running were demonstrated and proved not to be totally conflicting and therefore suitable for a dual mode operation. Different daily usage profiles (five use patterns were defined), and zoning of sleeping and living areas are presented. The dual mode use patterns compared to the base case house, for all the user possibilities, had improved performances of 17-52%, when compared to the free-running mode and 66-98% when compared to the conditioned mode. Simulation runs using other warm-humid climates (Miami, USA; Sao Luis, Brazil; Kuala Lumpur, Malaysia) were also conducted and compared to the results found for Darwin. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The present paper reviews the findings of 30 years of verbal/manual dual task studies, the method most commonly used to assess lateralization of speech production in non-clinical samples. Meta-analysis of 64 results revealed that both the type of manual task used and the nature of practice that is given influence the size of the laterality effect. A meta-analysis of 36 results examining the effect size of sex differences in estimate,, of lateralization of speech production indicated that males appear to show, slightly larger laterality effects than females. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.