197 resultados para Modelling Systems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (31)) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic (Aporrectodea noctunia), and an endogeic species (Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (FMRI) analysis methods can be quite generally divided into hypothesis-driven and data-driven approaches. The former are utilised in the majority of FMRI studies, where a specific haemodynamic response is modelled utilising knowledge of event timing during the scan, and is tested against the data using a t test or a correlation analysis. These approaches often lack the flexibility to account for variability in haemodynamic response across subjects and brain regions which is of specific interest in high-temporal resolution event-related studies. Current data-driven approaches attempt to identify components of interest in the data, but currently do not utilise any physiological information for the discrimination of these components. Here we present a hypothesis-driven approach that is an extension of Friman's maximum correlation modelling method (Neurolmage 16, 454-464, 2002) specifically focused on discriminating the temporal characteristics of event-related haemodynamic activity. Test analyses, on both simulated and real event-related FMRI data, will be presented.