199 resultados para Adipocyte growth
Resumo:
As survival of patients with CF increases,glucose intolerance and cystic fibrosisrelated diabetes (CFRD),ar e increasingly recognised common complications. CFRD may be preceded by a pre-diabetic state. Using markers identified as being associated with CFRD may improve targeted screening. Aim: To identify features consistently predicting CFRD in paediatric patients. Patients diagnosed with CFRD between January 1997–January 2002 were compared with age and sex matched controls. Clinical,micr obiological, and hospitalisation data was collected at time of CFRD diagnosis,and at six monthly intervals for 3 yr prior to diagnosis. Eight patients with CFRD were identified,mean age 13.7 yr (S.D. 3.49) at time of diagnosis. Control patients underwent OGTT to ensure normal glucose tolerance. Patients with CFRD had a lower FEV1 up to 12 months prior to diagnosis however, this was only significant at diagnosis. There was no difference in weight and height z scores between the 2 groups; however,the decrease in weight and height z scores in the CFRD group over 3 yr prior to diagnosis was significant. Mean number of days in hospital and admissions per patient significantly increased in the CFRD group,6 months prior to diagnosis. No other significant differences were observed between the 2 groups. Conclusions: This study has shown a difference in lung function,gr owth parameters and frequency of hospital admissions between patients with CFRD and controls. These differences may be utilised as tools for targeted screening in the paediatricyadolescent population. Further larger scale studies are required to improve guidelines for targeted screening in this population.
Resumo:
In order to develop a method for use in investigations of spatial biomass distribution in solid-state fermentation systems, confocal scanning laser microscopy was used to determine the concentrations of aerial and penetrative biomass against height and depth above and below the substrate surface, during growth of Rhizopus oligosporus on potato dextrose agar. Penetrative hyphae had penetrated to a depth of 0.445 cm by 64 h and showed rhizoid morphology, in which the maximum biomass concentration, of 4.45 mg dry wt cm(-3), occurred at a depth of 0.075 cm. For aerial biomass the maximum density of 39.54 mg dry wt(-3) occurred at the substrate surface. For both aerial and penetrative biomass, there were two distinct regions in which the biomass concentration decayed exponentially with distance from the surface. For aerial biomass, the first exponential decay region was up to 0.1 cm height. The second region above the height of 0.1 cm corresponded to that in which sporangiophores dominated. This work lays the foundation for deeper studies into what controls the growth of fungal hyphae above and below the surfaces of solid substrates. (C) Wiley Periodicals, Inc.
Resumo:
Two methods were compared for determining the concentration of penetrative biomass during growth of Rhizopus oligosporus on an artificial solid substrate consisting of an inert gel and starch as the sole source of carbon and energy. The first method was based on the use of a hand microtome to make sections of approximately 0.2- to 0.4-mm thickness parallel to the substrate surface and the determination of the glucosamine content in each slice. Use of glucosamine measurements to estimate biomass concentrations was shown to be problematic due to the large variations in glucosamine content with mycelial age. The second method was a novel method based on the use of confocal scanning laser microscopy to estimate the fractional volume occupied by the biomass. Although it is not simple to translate fractional volumes into dry weights of hyphae due to the lack of experimentally determined conversion factors, measurement of the fractional volumes in themselves is useful for characterizing fungal penetration into the substrate. Growth of penetrative biomass in the artificial model substrate showed two forms of growth with an indistinct mass in the region close to the substrate surface and a few hyphae penetrating perpendicularly to the surface in regions further away from the substrate surface. The biomass profiles against depth obtained from the confocal microscopy showed two linear regions on log-linear plots, which are possibly related to different oxygen availability at different depths within the substrate. Confocal microscopy has the potential to be a powerful tool in the investigation of fungal growth mechanisms in solid-state fermentation. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Nodal shoot cultures of 'Clone 003', a selected Australian papaya cultivar, were cultured on modified De Fossard medium supplemented with chemicals that either promote ethylene evolution or inhibit action while in culture. Nodal shoot cultures grown in the presence of 1-aminocyclopropane carboxylic acid (ACC, 1.0 mM) resulted in a significant reduction in percent fresh and dry weights, shoot length, leaf area, petiole length and chlorophyll content, but leaf development was significantly increased. In contrast, nodal cultures grown in the presence of silver thiosulphate (STS, 0.5 mM) significantly produced the highest percentage of fresh and dry weights, shoot length, leaf production, leaf area expansion, petiole length and leaf chlorophyll content. Nodal cultures and rooted whole plantlets placed in medium-sized (125 mL) culture vessels had significantly better growth than those cultures placed in small (70 mL) or in large (250 mL) vessels. Cultures grown in medium-sized vessels had higher fresh and dry weights, longer shoots, more leaves and larger leaf area than those cultures placed in smaller or larger vessels. Similarly, values for said growth parameters and for chlorophyll content of the nodal and rooted whole plantlets were higher when they were incubated under high light intensity of 120 mumol m(-2)s(-1) at a prevailing temperature of either 20+/-1 C or 25+/-1 C.