244 resultados para genetic relationships
Resumo:
Sodium (Na+) is toxic to most plants, but the molecular mechanisms of plant Na+ uptake and distribution remain largely unknown. Here we analyze Arabidopsis lines disrupted in the Na+ transporter AtHKT1. AtHKT1 is expressed in the root stele and leaf vasculature. athkt1 null plants exhibit lower root Na+ levels and are more salt resistant than wild-type in short-term root growth assays. In shoot tissues, however, athkt1 disruption produces higher Na+ levels, and athkt1 and athktl/sos3 shoots are Na+-hypersensitive in long-term growth assays. Thus wild-type AtHKT1 controls root/shoot Na+ distribution and counteracts salt stress in leaves by reducing leaf Na+ accumulation. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
In many species, females display preferences for extreme male signal traits, but it has not been determined if such preferences evolve as a consequence of females gaining genetic benefits from exercising choice. If females prefer extreme male traits because they indicate male genetic quality that will enhance the fitness of offspring, a genetic correlation will evolve between female preference genes and genes that confer offspring fitness. We show that females of Drosophila serrata prefer extreme male cuticular hydrocarbon (CHC) blends, and that this preference affects offspring fitness. Female preference is positively genetically correlated with offspring fitness, indicating that females have gained genetic benefits from their choice of males. Despite male CHCs experiencing strong sexual selection, the genes underlying attractive CHCs also conferred lower offspring fitness, suggesting a balance between sexual selection and natural selection may have been reached in this population.
Resumo:
The importance of founder events in promoting evolutionary changes on islands has been a subject of long-running controversy. Resolution of this debate has been hindered by a lack of empirical evidence from naturally founded island populations. Here we undertake a genetic analysis of a series of historically documented, natural colonization events by the silvereye species-complex (Zosterops lateralis), a group used to illustrate the process of island colonization in the original founder effect model. Our results indicate that single founder events do not affect levels of heterozygosity or allelic diversity, nor do they result in immediate genetic differentiation between populations. Instead, four to five successive founder events are required before indices of diversity and divergence approach that seen in evolutionarily old forms. A Bayesian analysis based on computer simulation allows inferences to be made on the number of effective founders and indicates that founder effects are weak because island populations are established from relatively large flocks. Indeed, statistical support for a founder event model was not significantly higher than for a gradual-drift model for all recently colonized islands. Taken together, these results suggest that single colonization events in this species complex are rarely accompanied by severe founder effects, and multiple founder events and/or long-term genetic drift have been of greater consequence for neutral genetic diversity.
Resumo:
Microsatellites are difficult to recover from large plant genomes so cross-specific utilisation is an important source of markers. Fifty micro satellites were tested for cross-specific amplification and polymorphism to two New World hard pine species, slash pine (Pinus elliottii var. elliottii) and Caribbean pine (R caribaea var. hondurensis). Twenty-nine (58%) markers amplified in both hard pine species, and 23 of these 29 were polymorphic. Soft pine (subgenus Strobus) microsatellite markers did amplify, but none were polymorphic. Pinus elliottii var. elliottii and R caribaea var. hondurensis showed mutational changes in the flanking regions and the repeat motif that were informative for Pinus spp. phylogenetic relationships. Most allele length variation could be attributed to variability in repeat unit number. There was no evidence for ascertainment bias.
Resumo:
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last-male sperm precedence in this species, but they were unable to sample complete Utters, and did not take male size and relatedness into account. We tested whether last-male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. in these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring, To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele-sharing resulted in lower paternity success.
Resumo:
Sorghum ergot was first discovered in Australia in 1996. It affects seed production and grain usage in stock feed due to concerns of animal toxicity. Three species of Claviceps are known to cause ergot of sorghum with different epidemiological, animal toxicity, and management implications. Claviceps africana was identified as the causal agent but morphological differences between isolates raised the possibility of more than one species being involved. The major aim of this study was to identify the Claviceps species causing sorghum ergot and to determine the genetic diversity among isolates of the ergot pathogen from Australia and overseas. Symptom development, sequencing of the ITS1 region, and radiolabelled DNA amplification fingerprints (RAF) were used to confirm that ergot of sorghum in Australia is caused by C. africana. The morphology of sphacelia, microconidia, macroconidia, and secondary conidia of all 36 Australian isolates studied matched the description for C. africana and the DNA sequence of the ITS1 region of 2 selected Australian isolates was identical to that of C. africana. Based on RAF analysis of 110 Australian and overseas isolates of Claviceps spp., C. africana isolates could be clearly distinguished (
Resumo:
Allozyme analysis was used to address the question of the source of the Australian populations of the monarch butterfly Danaus plexippus (L.). The study had three major aims: (1) To compare the levels of diversity of Australian and Hawaiian populations with potential source populations. (2) To determine whether eastern and western North American populations were sufficiently divergent for the Australian populations to be aligned to a source population. (3) To compare the differentiation among regions in Australia and North America to test the prediction of greater genetic structure in Australia, as a consequence of reduced migratory behaviour. The reverse was found, with F-ST values an order of magnitude lower in Australia than in North America. Predictably, Australian and Hawaiian populations had lower allelic diversity, but unexpected higher heterozygosity values than North American populations. It was not possible to assign the Australian populations to a definitive source, although the high levels of similarity of Australian populations to each other suggest a single colonization event. The possibility that the Australian populations have not been here long enough to reach equilibrium is discussed. (C) 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 75, 437-452.
Resumo:
High levels of inheritable resistance to phosphine in Rhyzopertha dominica have recently, been detected in Australia and hi art effort to isolate the genes responsible For resistance we have used random amplified DNA fingerprinting (RAF) to produce a genetic linkage map of R. dominica. The map consists of 94 dominant DNA markers with art average distance between markers of 4.6 cM and defines nine linkage groups with a total recombination distance of 390.1 cM. We have identified two loci that are responsible for high-level resistance. One provides similar to50x resistance to phosphine while the other provides 12.5x resistance and in combination, the two genes act synergistically to provide a resistance level 250 x greater than that of fully susceptible beetles. The haploid genome size has been determined to be 4.76 x 10(8) bp, resulting in an average physical distance of 1.2 Mbp per map unit. No recombination has been observed between either of the two resistance loci and their adjacent DNA markers in a population of 44 fully resistant F-5 individuals, which indicates that the genes are likely to reside within 0.91 cM (1.1 Mbp) of the DNA markers.
Resumo:
Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.
Resumo:
Nine novel arsenite-oxidizing bacteria have been isolated from two different gold mine environments in Australia. Four of these organisms grow chemolithoautotrophically with oxygen as the terminal electron acceptor, arsenite as the electron donor, and carbon dioxide-bicarbonate as the sole carbon source. Five heterotrophic arsenite-oxidizing bacteria were also isolated, one of which was found to be both phylogenetically and physiologically identical to the previously described heterotrophic arsenite oxidizer misidentified as Alcaligenes faecalis. The results showed that this strain belongs to the genus Achromobacter. Phylogenetically, the arsenite-oxidizing bacteria fall within two separate subdivisions of the Proteobacteria. Interestingly, the chemolithoautotrophic arsenite oxidizers belong to the alpha-Proteobacteria, whereas the heterotrophic arsenite oxidizers belong to the beta-Proteobacteria.
Resumo:
Genetic diversity in Cassia brewsteri (F. Muell.) F. Muell. ex Benth. was assessed with Randomly Amplified DNA Fingerprints (RAFs). Thirty accessions of C. brewsteri collected from throughout its natural distribution were analysed with three random decamer primers, along with three accessions of C. tomentella (Benth.) Domin and a single accession of each of C. queenslandica C. T. White and C. marksiana (F. M. Bailey) Domin. The three primers yielded a reproducible amplification profile of 265 scorable polymorphic fragments for the 35 accessions. These molecular markers were used to calculate Nei and Li similarity coefficients between each pair of individuals. A matrix of dissimilarity of each pair of individuals was examined by multidimensional scaling (MDS). The analysis supports the division of C. brewsteri into two subspecies and the suggestion that intergradation of C. brewsteri and C. tomentella can occur where the distributions of these species meet.
Resumo:
Lucerne (Medicago sativa L.) is autotetraploid, and predominantly allogamous. This complex breeding structure maximises the genetic diversity within lucerne populations making it difficult to genetically discriminate between populations. The objective of this study was to evaluate the level of random genetic diversity within and between a selection of Australian-grown lucerne cultivars, with tetraploid M. falcata included as a possible divergent control source. This diversity was evaluated using random amplified polymorphic DNA (RAPDs). Nineteen plants from each of 10 cultivars were analysed. Using 11 RAPD primers, 96 polymorphic bands were scored as present or absent across the 190 individuals. Genetic similarity estimates (GSEs) of all pair-wise comparisons were calculated from these data. Mean GSEs within cultivars ranged from 0.43 to 0.51. Cultivar Venus (0.43) had the highest level of intra-population genetic diversity and cultivar Sequel HR (0.51) had the lowest level of intra-population genetic diversity. Mean GSEs between cultivars ranged from 0.31 to 0.49, which overlapped with values obtained for within-cultivar GSE, thus not allowing separation of the cultivars. The high level of intra- and inter-population diversity that was detected is most likely due to the breeding of synthetic cultivars using parents derived from a number of diverse sources. Cultivar-specific polymorphisms were only identified in the M. falcata source, which like M. sativa, is outcrossing and autotetraploid. From a cluster analysis and a principal components analysis, it was clear that M. falcata was distinct from the other cultivars. The results indicate that the M. falcata accession tested has not been widely used in Australian lucerne breeding programs, and offers a means of introducing new genetic diversity into the lucerne gene pool. This provides a means of maximising heterozygosity, which is essential to maximising productivity in lucerne.