190 resultados para Phase Variation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sun exposure in childhood is I of the risk factors for developing skin cancer, yet little is known about levels of exposure at this age. This is particularly important in countries with high levels of ultraviolet radiation. (UVR) such as Australia. Among 49 children 3 to 5 years of age attending child care centers, UVR exposure was studied under 4 conditions in a repeated measures design; sunny days, cloudy days, teacher's instruction to stay in the shade, and a health professionals instruction to apply sunscreen. Three different data collection methods were employed: (a) completion of questionnaire or diary by parents and researcher, (b) polysulphone dosimeter readings, and (c) observational audits (video recording). Results of this study indicated that more than half the children had been sunburnt (pink or red) and more than a third had experienced painful sunburn (sore or tender) in the last summer. Most wore short sleeve shirts, short skirts or shorts and cap, that do not provide optimal levels of skin protection. However, sunscreen was applied to all exposed parts before the children went out to the playground. Over the period of I hr (9-10 a.m.) the average amount of time children spent in full sun was 22 min. On sunny days there was more variation across children in the amount of sun exposure received. While the potential amount of UVR exposure for young children during the hour they were outside on a sunny day was 1.45 MED (Minimum Erythemal Dose), they received on average 0.35 MED, which is an insufficient amount to result in an erythemal response on fair skin even without the use of sunscreen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we revisit the surface mass excess in adsorption studies and investigate the role of the volume of the adsorbed phase and its density in the analysis of supercritical gas adsorption in non-porous as well as microporous solids. For many supercritical fluids tested (krypton, argon, nitrogen, methane) on many different carbonaceous solids, it is found that the volume of the adsorbed phase is confined mostly to a geometrical volume having a thickness of up to a few molecular diameters. At high pressure the adsorbed phase density is also found to be very close to but never equal or greater than the liquid phase density. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 93 K X-ray crystal structure of tris(ethane-1,2-diamine)zinc(II) dinitrate is reported. As predicted by the spectroscopic studies of other workers, there is a reversible phase transition of the structure at low temperature. We have determined this temperature to be 143 K. The structure at this temperature and below resembles that of the room temperature structure, except the crystallographic D-3 symmetry of the complex cation (296 K) is lowered to C-2 ( below 144 K) by subtle changes in cation-anion hydrogen bonding. No change in the conformation of the cation or its bond lengths and angles was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of the crystallite structure of several coal chars during gasification in air and carbon dioxide was studied by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The XRD analysis of the partially gasified coal chars, based on two approaches, Scherrer's equation and Alexander and Sommer's method, shows a contradictory trend of the variation of the crystallite height with carbon conversion, despite giving a similar trend for the crystallite width change. The HRTEM fringe images of the partially gasified coal chars indicate that large and highly ordered crystallites exist at conversion levels as high as 86%. It is also demonstrated that the crystalline structure of chars can be very different although their pore structures are similar, suggesting a combination of crystalline structure analysis with pore structure analysis in studies of carbon gasification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanism of liquid-phase evaporation in a three-phase fixed-bed reactor is of practical importance, because the reaction heat is usually 7-10 times the vaporization heat of the liquid components. Evaporation, especially the liquid dryout, can largely influence the reactor performance and even safety. To predict the vanishing condition of the liquid phase, Raoult's law was applied as a preliminary approach, with the liquid vanishing temperature defined based on a liquid flow rate of zero. While providing correct trends, Raoult's law exhibits some limitation in explaining the temperature profile in the reactor. To comprehensively understand the whole process of liquid evaporation, a set of experiments on inlet temperature, catalyst activity, liquid flow rate, gas flow rate, and operation pressure were carried out. A liquid-region length-predicting equation is suggested based on these experiments and the principle of heat balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperatures impose restrictions on rice (Oryza sativa L.) production at high latitudes. This study is related to low temperature damage that can arise mid-season during the panicle development phase. The objective of this study was to determine whether low temperature experienced by the root, panicle, or foliage is responsible for increased spikelet sterility. In temperature-controlled glasshouse experiments, water depth, and water and air temperatures, were changed independently to investigate the effects of low temperature in the root, panicle, and foliage during microspore development on spikelet sterility. The total number of pollen and number of engorged pollen grains per anther, and the number of intercepted and germinated pollen grains per stigma, were measured. Spikelet sterility was then analysed in relation to the total number of pollen grains per spikelet and the efficiency with which these pollen grains became engorged, were intercepted by the stigma, germinated, and were involved in fertilisation. There was a significant combined effect of average minimum panicle and root temperatures on spikelet sterility that accounted for 86% of the variation in spikelet sterility. Total number of pollen grains per anther was reduced by low panicle temperature, but not by low root temperature. Whereas engorgement efficiency ( the percentage of pollen grains that were engorged) was determined by both root and panicle temperature, germination efficiency (the percentage of germinated pollen grains relative to the number of engorged pollen grains intercepted by the stigma) was determined only by root temperature. Interception efficiency (i.e. percentage of engorged pollen grains intercepted by the stigma), however, was not affected by either root or panicle temperature. Engorgement efficiency was the dominant factor explaining the variation in spikelet sterility. It is concluded that both panicle and root temperature affect spikelet sterility in rice when the plant encounters low temperatures during the microspore development stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(tetrafluoroethylene-co-perfluoropropyI vinyl ether), PFA, was grafted with styrene from the vapor phase using a simultaneous radiation grafting method. The graft yields were measured as a function of the dose and dose rate and were found to be initially linearly dependent on the dose and independent of the dose rate up to dose rates of similar to3 kGy/h. However, at a dose rate of 6.2 kGy/h, the slope of the yield-grafting time plot decreased. Raman depth profiles of the grafts showed that the polystyrene concentrations were greatest near the surface of the grafted samples and decreased with depth. The maximum penetration depth of the graft depended on the radiation dose for a fixed dose rate. Fmoc-Rink loading tests showed that the grafts displayed superior loading compared to grafts prepared from bulk styrene or from styrene solutions other than methanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of the pore structure of several coal chars during gasification in air and carbon dioxide was studied by argon adsorption at 87 K and CO2 adsorption at 273 K. It is found that the surface area and volume of the small pores (10 Å for air gasification is constant over a wide range of conversion (>20%), while for CO2 gasification similar results are obtained using the total surface area. However, in the early stages of gasification (