239 resultados para Molecular medicine
Resumo:
Life history has been implicated as a determinant of variation in rate of molecular evolution amongst vertebrate species because of a negative correlation between bode size and substitution rate for many Molecular data sets. Both the generality and the cause of the negative bode size trend have been debated, and the validity of key studies has been questioned (particularly concerning the failure to account for phylogenetic bias). In this study, a comparative method has been used to test for an association between a range of life-history variables-such as body size age at maturity, and clutch size-and DNA substitution rate for three genes (NADH4, cytochrome b, and c-mos). A negative relationship between body size and rate of molecular evolution was found for phylogenetically independent pairs of reptile species spanning turtles. lizards. snakes, crocodile, and tuatara. Although this Study was limited by the number of comparisons for which both sequence and lite-history data were available, the results, suggest that a negative bode size trend in rate of molecular evloution may be a general feature of reptile molecular evolution. consistent with similar studies of mammals and birds. This observation has important implications for uncovering the mechanisms of molecular evolution and warns against assuming that related lineages will share the same substitution rate (a local molecular clock) in order to date evolutionary divergences from DNA sequences.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
In the carnivorous plant family Lentibulariaceae, the bladderwort lineage (Utricularia and Genlisea) is substantially more species-rich and morphologically divergent than its sister lineage, the butterworts (Pinguicula). Bladderworts have a relaxed body plan that has permitted the evolution of terrestrial, epiphytic, and aquatic forms that capture prey in intricately designed suction bladders or corkscrew-shaped lobster-pot traps. In contrast, the flypaper-trapping butterworts maintain vegetative structures typical of angiosperms. We found that bladderwort genomes evolve significantly faster across seven loci (the trnL intron, the second trnL exon, the trnL-F intergenic spacer, the rps16 intron, rbcL, coxI, and 5.8S rDNA) representing all three genomic compartments. Generation time differences did not show a significant association. We relate these findings to the contested speciation rate hypothesis, which postulates a relationship between increased nucleotide substitution and increased cladogenesis. (C) 2002 The Willi Hennig Society.
Resumo:
We study the process of photodissociation of a molecular Bose-Einstein condensate as a potential source of strongly correlated twin atomic beams. We show that the two beams can possess nearly perfect quantum squeezing in their relative numbers.
Resumo:
The phylogenetic relationships amongst 29 species of Carlia and Lygisaurus were estimated using a 726-base-pair segment of the protein-coding mitochondrial ND4 gene. Results do not support the recent resurrection of the genus Lygisaurus. Although most Lygisaurus species formed a single clade, this clade is nested within Carlia and includes Carlia parrhasius. Due to this new molecular evidence, and the paucity of diagnostic morphological characters separating the genera, Lygisaurus de Vis 1884 is re-synonymised with Carlia Gray 1845. Our analysis is also inconsistent with a previous suggestion that Lygisaurus timlowi should be removed to Menetia, a genus that is distantly related relative to outgroups used here. Intraspecific variation in Carlia is, in several instances, greater than interspecific distance. The most strikingly divergent lineages are found within C. rubrigularis, which appears to be paraphyletic, with southern populations more closely related to C. rhomboidalis than to northern populations of C. rubrigularis. The two C. rubrigularis-C. rhomboidalis lineages form part of a major polytomy at an intermediate level of divergence. Lack of resolution at this level, however, does not appear to be due to saturation or loss of phylogenetic signal. Rather, the polytomy probably reflects a period of relatively rapid diversification that occurred sometime during the Miocene.
Resumo:
l-(BETS)2FeCl4 undergoes transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe31 magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. We show how He can be extracted from the observed splitting of the Shubnikov–de Haas frequencies. We predict the field range for field-induced superconductivity in other materials.
Resumo:
Advances in technologies such as mass spectrometry and capillary electrophoresis have encouraged the study of ancient lipids and other ancient biomolecules. Now, microarray technology looks set to revolutionise the study of ancient DNA, perhaps with as much impact as that of PCR.
Resumo:
The formation of molecular complexes (prereactive intermediates) between C3O2 and amines (ammonia, dimethylamine, trimethylamine, and 4-(dimethylamino)pyridine) as well as the subsequent transformation of the complexes into C3O2-amine zwitterions in cryogenic matrixes (ca. 40 K) has been observed. In the case of dimethylamine, the formation of tetramethylmalonamide has also been documented. Calculations using density functional theory (B3LYP/6-31G(2d, p)) are used to assign all above species and are in excellent agreement with the IR spectra.
Resumo:
Given the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of alpha-chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the ostuolyte-mediated stabilization of the a-chymotrypsin homodimer, we have used models based on binding interactions (transfer-free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer-free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar-mediated stabilization of the alpha-chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the a-chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Resumo:
A method based on isothermal calorimetry is described for the direct kinetic assay of pyruvate kinase. In agreement with earlier findings based on the standard coupled assay system for this enzyme in the presence of a fixed ADP concentration, the essentially rectangular hyperbolic dependence of initial velocity upon phosphoenolpyruvate concentration is rendered sigmoidal by the allosteric inhibitor phenylalanine. This effect of phenylalanine can be countered by including a high concentration of a space- filling osmolyte such as proline in the reaction mixtures. This investigation thus affords a dramatic example that illustrates the need to consider potential consequences of thermodynamic nonideality on the kinetics of enzyme reactions in crowded molecular environments such as the cell cytoplasm.
Resumo:
The snap-trap leaves of the aquatic waterwheel plant (Aldrovanda) resemble those of Venus' flytrap (Dionaea), its distribution and habit are reminiscent of bladderworts (Utricularia), but it shares many reproductive characters with sundews (Drosera). Moreover, Aldrovanda has never been included in molecular phylogenetic studies, so it has been unclear whether snap-traps evolved only once or more than once among angiosperms. Using sequences from nuclear 18S and plastid rbcL, atpB, and matK genes, we show that Aldrovanda is sister to Dionaea, and this pair is sister to Drosera. Our results indicate that snap-traps are derived from flypaper-traps and have a common ancestry among flowering plants, despite the fact that this mechanism is used by both a terrestrial species and an aquatic one. Genetic and fossil evidence for the close relationship between these unique and threatened organisms indicate that carnivory evolved from a common ancestor within this caryophyllid clade at least 65 million years ago.