211 resultados para Gene transfection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis of novel polycationic lipophilic peptide core(s) was accomplished and these agents successfully transfected human retinal pigment epithelium cells with ODN1 upon complexation with the oligonucleotide. The level of transfection was indirectly measured by the decreased production of the protein hVEGF (human vascular endothelial growth factor) in comparison to the transfection agent cytofectin GSV(TM). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of electrotransfer for DNA delivery to prokaryotic cells, and eukaryotic cells in vitro, has been well known and widely used for many years. However, it is only recently that electric fields have been used to enhance DNA transfer to animal cells in vivo, and this is known as DNA electrotransfer or in vivo DNA electroporation. Some of the advantages of this method of somatic cell gene transfer are that it is a simple method that can be used to transfer almost any DNA construct to animal cells and tissues in vivo; multiple constructs can be co-transfected; it is equally applicable to dividing and nondividing cells; the DNA of interest does not need to be subeloned into a specific viral transfer vector and there is no need for the production of high titre viral stocks; and, as no viral genes are expressed there is less chance of an adverse immunologic reaction to vector sequences. The ease with which efficient in vivo gene transfer can be achieved with in vivo DNA electrotransfer is now allowing genetic analysis to be applied to a number of classic animal model systems where transgenic and embryonic stem cell techniques are not well developed, but for which a wealth of detailed descriptive embryological information is available, or surgical manipulation is much more feasible. As well as exciting applications in developmental biology, in vivo DNA electrotransfer is also being used to transfer genes to skeletal muscle and drive expression of therapeutically active proteins, and to examine exogenous gene and protein function in normal adult cells situated within the complex environment of a tissue and organ system in vivo. Thus, in effect providing the in vivo equivalent of the in vitro transient transfection assay. As the widespread use of in vivo electroporation has really only just begun, it is likely that the future will hold many more applications for this technology in basic research, biotechnology and clinical research areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated sodium channels drive the initial depolarization phase of the cardiac action potential and therefore critically determine conduction of excitation through the heart. In patients, deletions or loss-of-function mutations of the cardiac sodium channel gene, SCN5A, have been associated with a wide range of arrhythmias including bradycardia (heart rate slowing), atrioventricular conduction delay, and ventricular fibrillation. The pathophysiological basis of these clinical conditions is unresolved. Here we show that disruption of the mouse cardiac sodium channel gene, Scn5a, causes intrauterine lethality in homozygotes with severe defects in ventricular morphogenesis whereas heterozygotes show normal survival. Whole-cell patch clamp analyses of isolated ventricular myocytes from adult Scn5a(+/-) mice demonstrate a approximate to50% reduction in sodium conductance. Scn5a(+/-) hearts have several defects including impaired atrioventricular conduction, delayed intramyocardial conduction, increased ventricular refractoriness, and ventricular tachycardia with characteristics of reentrant excitation. These findings reconcile reduced activity of the cardiac sodium channel leading to slowed conduction with several apparently diverse clinical phenotypes, providing a model for the detailed analysis of the pathophysiology of arrhythmias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Familial adenomatous polyposis (FAP) is an autosomal dominant disorder caused by mutation of the APC gene. It is characterised by the appearance of hundreds to thousands of colorectal adenomas in adolescence and the subsequent development of colorectal cancer. Various extracolonic malignancies are associated with FAP, including desmoids and neoplasms of the stomach, duodenum, pancreas, liver, and brain. We present a family affected by FAP with an exon 14 APC mutation displaying two rare extracolonic lesions, a hepatoblastoma and a myoepithelial carcinoma. The hepatoblastoma was found in a male patient aged 2 years. The second lesion, a myoepithelial carcinoma of the right cheek, was found in a female patient aged 14 years. Inactivation of the normal APC allele was demonstrated in this lesion by loss of heterozygosity analysis, thus implicating APC in the initiation or progression of this neoplasm. This is the first reported case of this lesion in a family affected by FAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cloninger's psychobiological model of personality as applied to substance misuse has received mixed support. Contrary to the model, recent data suggest that a combination of high novelty seeking (NS) and high harm avoidance (HA) represents a significant risk for the development of severe substance misuse. A genetic polymorphism previously implicated in severe substance dependence, the A1 allele of the D2 dopamine receptor (DRD2) gene, was examined in relation to NS and HA amongst 203 adolescent boys. Specifically, we hypothesized that subjects with the A1 + allele (A1/A1 and A1/A2 genotypes) would report stronger NS and would exhibit a more positive relationship between NS and HA than those with the A1-allele (A2/A2 genotypes). These predictions were supported. The correlation between NS and HA in 81 A1 + allelic boys (r = 0.27, P = 0.02), and that in the 122 A1- allelic boys (r = -0.15, P = 0.09), indicated that this relationship differed according to allelic status (F = 8.52, P < 0:004). Among those with the A1-allele, the present results are consistent with the traditional view that novelty seeking provides positive reinforcement, or the fulfillment of appetitive drives. In contrast, novelty seeking in those with the A1 + allele appears to include a negative reinforcement or self-medicating function. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The haploid NK model developed by Kauffman can be extended to diploid genomes and to incorporate gene-by-environment interaction effects in combination with epistasis. To provide the flexibility to include a wide range of forms of gene-by-environment interactions, a target population of environment types (TPE) is defined. The TPE consists of a set of E different environment types, each with their own frequency of occurrence. Each environment type conditions a different NK gene network structure or series of gene effects for a given network structure, providing the framework for defining gene-by-environment interactions. Thus, different NK models can be partially or completely nested within the E environment types of a TPE, giving rise to the E(NK) model for a biological system. With this model it is possible to examine how populations of genotypes evolve in context with properties of the environment that influence the contributions of genes to the fitness values of genotypes. We are using the E(NK) model to investigate how both epistasis and gene-by-environment interactions influence the genetic improvement of quantitative traits by plant breeding strategies applied to agricultural systems. © 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly, cystic fibrosis (CF) is regarded as an inflammatory disorder where the response of the lung to Pseudomonas aeruginosa is exaggerated as a consequence of processes mediated by the product of the CF gene, CFTR. Of importance to any gene-replacement strategy for treatment of CF is the identification of the cell type(s) within the lung milieu that need to be corrected and an indication whether this is sufficient to restore a normal inflammatory response and bacterial clearance. We generated G551D CF mice transgenically expressing the human CFTR gene in two tissue compartments previously demonstrated to mediate a CFTR-dependent inflammatory response: lung epithelium and alveolar macrophages. Following chronic pulmonary infection with P. aeruginosa, CF mice with epithelial-expressed but not macrophage-specific CFTR showed an improvement in pathogen clearance and inflammatory markers compared with control CF animals. Additionally, these data indicate the general role for epithelial cell-mediated events in the response of the lung to bacterial pathogens and the importance of CFTR in mediating these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic sulfate is one of the most abundant anions in mammalian plasma and is essential for proper cell growth and development, as well as detoxification and activation of many biological compounds. To date, little is understood how physiological levels of sulfate are maintained in the body. Our studies, and of others, have identified the NAS(i)-1 protein to be a functional sulfate transporter in the kidney and intestine, and due to this localization, constitutes a strong candidate gene for maintaining body sulfate homeostasis. Several factors, including hormones and metabolic conditions, have been shown to alter NAS(i)-1 mRNA and protein levels in vivo. In this study, we describe the transcriptional regulation of NaSi-1, with a focus on the mouse NaSi-1 gene (Nas1) that was recently cloned in our laboratory. Vitamin D (1,25-(OH)(2)D-3) and thyroid hormone (T-3) led to an increase in Nas1 promoter activity in OK cells. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3 responsive element (IRO T3RE) at -426 to -425 which conferred 1,25-(OH)(2)D-3 and T-3 responsiveness respectively. These findings suggest for vitamin D and thyroid hormone regulation of NaSi-1, may provide important clues to the physiological control of sulfate homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular events that drive the initiation and progression of ovarian adenocarcinoma are not well defined. We have investigated changes in gene expression in ovarian cancer cell lines compared to an immortalized human ovarian surface epithelial cell line (HOSE) using a cDNA array. We identified 17 genes that were under-expressed and 10 genes that were over-expressed in the cell lines compared to the HOSE cells. One of the genes under-expressed in the ovarian cancer cell lines, Id3, a transcriptional inactivator, was selected for further investigation. Id3 mRNA was expressed at reduced levels in 6 out of 9 ovarian cancer cell lines compared to the HOSE cells while at the protein level, all 7 ovarian cancer cell lines examined expressed the Id3 protein at greatly reduced levels. Expression of Id3 mRNA was also examined in primary ovarian tumours and was found in only 12/38 (32%) cases. A search was conducted far mutations of Id3 in primary ovarian cancers using single stranded conformation polymorphism (SSCP) analysis. Only one nucleotide substitution, present also in the corresponding constitutional DNA, was found in 94 ovarian tumours. Furthermore no association was found between LOH at 1p36 and lack of expression of Id3. These data suggest that Id3 is not the target of LOH at 1p36. (C) 2001 Cancer Research Campaign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article represents the proceedings of a symposium at the 2002 joint RSA/ISBRA Conference in San Francisco, California. The organizer was Paula L. Hoffman and the co-chairs were Paula L. Hoffman and Michael Miles. The presentations were (1) Introduction and overview of the use of DNA microarrays, by Michael Miles; (2) DNA microarray analysis of gene expression in brains of P and NP rats, by Howard J. Edenberg; (3) Gene expression patterns in brain regions of AA and ANA rats, by Wolfgang Sommer; (4) Patterns of gene expression in brains of selected lines of mice that differ in ethanol tolerance, by Boris Tabakoff; (5) Gene expression profiling related to initial sensitivity and tolerance in gamma-protein kinase C mutants, by Jeanne Wehner; and (6) Gene expression patterns in human alcoholic brain: from microarrays to protein profiles, by Joanne Lewohl.