189 resultados para word-formation processes
Resumo:
The formation of CdS nanoparticles by reacting mixed Langmuir-Blodgett films of arachidic acid and either octadecylamine or dimethyldioctadecylammonium nitrate on a cadmium-containing subphase with hydrogen sulfide gas has resulted in the identification of a number of structural changes, observed using grazing incidence X-ray diffraction. In the case of octadecylamine, the structure after reaction is a hexagonal close-packed array of surfactant-stabilized nanoclusters, with a lattice constant of a = 17.65 Angstrom. In both octadecylamine and dimethyldioctadecylammonium nitrate films, the presence of a unit cell tilted at 38degrees to the plane of the substrate was found. Despite these changes, the average nanoparticle size was unaffected by the addition of either second component to the film.
Resumo:
The synthesis and characterization of high-quality mesoporous silicoaluminophosphates (SAPOs) with a hexagonally arranged pore structure and a good thermal stability are described. The influence of some important synthesis parameters including temperature, time, and Si content in the synthesis gel was examined. The local environments of Al, P, and Si were investigated using MAS NMR spectroscopy. The acidity of the mesoporous SAPOs was studied and compared with those of aluminosilicate MCM-41 and SAPO-5. Results show that both the synthesis temperature and time have a significant impact on the formation of mesoporous SAPOs, whereas the presence of Si in the synthesis gel has a direct influence on the structure type and the quality of the resulting mesoporous SAPO materials. High-quality mesoporous SAPOs can be synthesized from the synthesis gels with Si/Al ratio smaller than 0.5 in the presence of cationic surfactants in a weakly basic aqueous solution. The mesoporous SAPO materials show interesting acidity properties, possessing both strong and mild sites. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Introducing poly(ethylene oxide) surfactant to aluminum hydrate colloids can effectively direct the crystal growth of boehmite and the crystal morphology of final gamma-alumina crystallites. Fibrous crystallites of gamma-alumina about 3-4 nm thick and 30-60 nm long are obtained. They stack randomly, resulting in a structure with a low contact area between the fibers but with a very large porosity. Such a structure exhibits strong resistance to sintering when heated to high temperatures. A sample retains a BET surface area of 68 m(2)/g, after being heated to 1473 K. The surfactant molecules form micelles that interact with the colloid particles of aluminum hydroxide through hydrogen bonding. This interaction is not sufficient to change the intrinsic crystal structure of boehmite, but induces profound changes in the morphology of boehmite crystallites and their growth. The surfactant-induced fiber formation (SIFF) process has distinct features from templated synthesis but shows similarities in some respects to biomineralization processes in which inorganic crystals with complex morphological shapes can be formed in biological systems. SIFF offers an effective approach to create new nanostructures of inorganic oxide from aqueous media.
Resumo:
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
Resumo:
In an attempt to elucidate the role of Slit2 invertebrate kidney development, the effect of adding exogenous human Slit2 protein (hSlit2) to developing murine metanephric kidney explants was examined. To confirm the activity of the recombinant Slit2 protein, neurons from 8 day old chick sympathetic nerve chain dorsal root ganglia were cultured with hSlit2 protein, which induced significant neurite branching and outgrowth. Using kidney explants as a model system, metanephric development in the presence of hSlit2 protein was examined. Addition of hSlit2 up to a final concentration of 1 mug/ml had no detectable effect on the formation of nephrons or on branching morphogenesis of the ureteric tree after 2 or 4 days in culture, as assessed via immunofluorescence for the markers WT1 and calbindin 28K respectively. Similarly, maturation of the nephrogenic mesenchyme occurred in a phenotypically normal fashion. In situ analysis of the Slit receptors, Robot and Robot, the vasculogenic markers VEGFA and Flk-1, and the stromal cell marker BF2 displayed no difference in comparison to controls.
Resumo:
For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martinez and Picco studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Phi on the space of probability distributions on {1, 2,.. }. In the case of a birth-death process, the components of Phi(nu) can be written down explicitly for any given distribution nu. Using this explicit representation, we will show that Phi preserves likelihood ratio ordering between distributions. A conjecture of Kryscio and Lefevre concerning the quasi-stationary distribution of the SIS logistic epidemic follows as a corollary.
Resumo:
Background: Cementum is essential for periodontal regeneration, as it provides anchorage between the root surface and the periodontal ligament. A variety of macromolecules present in the extracellular matrix of the periodontium, including proteoglycans, are likely to play a regulatory role in cementogenesis. Recently, the small leucine-rich proteoglycan, fibromodulin, has been isolated from bovine periodontal ligament and localized in bovine cementum, as well as in human periodontal ligament. Objective: The aim of this study was to examine the distribution of fibromodulin during cementogenesis and root formation. Methods: A standard indirect immunoperoxidase technique was employed, using an antifibromodulin polyclonal antibody on sections of molar teeth from rats aged 3, 5 and 8 weeks. Results: Immunoreactivity to fibromodulin was evident in the periodontal ligament in all sections. An intense positive stain was observed in the extracellular matrix where the periodontal ligament fibers insert into the alveolar bone and where the Sharpey's fibers insert into the cementum. There was no staining evident in the mineralized cellular and acellular cementum. The intensity of immunoreactivity to the antifibromodulin antibody increased proportionally with increasing tissue maturation. Conclusion: The results from this study suggest that fibromodulin is a significant component of the extracellular matrix in the periodontal ligament during development, and may play a regulatory role in the mineralization process or maintaining homeostasis at the hard-soft tissue interface during cementogenesis.
Resumo:
A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.
Resumo:
This paper considers the question of which is better: the batch or the continuous activated sludge processes? It is an important question because dissension still exists in the wastewater industry as to the relative merits of each of the processes. A review of perceived differences in the processes from the point of view of two related disciplines, process engineering and biotechnology, is presented together with the results of previous comparative studies. These reviews highlight possible areas where more understanding is required. This is provided in the paper by application of the flexibility index to two case studies. The flexibility index is a useful process design tool that measures the ability of the process to cope with long term changes in operation.
Resumo:
Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera . The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis . Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca2+ concentration. In contrast to octopamine, tyramine only elicited Ca2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions.
Resumo:
A growing demand for efficient air quality management calls for the development of technologies capable of meeting the stringent requirements now being applied in areas of chemical, biological and medical activities. Currently, filtration is the most effective process available for removal of fine particles from carrier gases. Purification of gaseous pollutants is associated with adsorption, absorption and incineration. In this paper we discuss a new technique for highly efficient simultaneous purification of gaseous and particulate pollutants from carrier gases, and investigate the utilization of Nuclear Magnetic Resonance (NMR) imaging for the study of the dynamic processes associated with gas-liquid flow in porous media. Our technique involves the passage of contaminated carrier gases through a porous medium submerged into a liquid, leading to the formation of narrow and tortuous pathways through the medium. The wet walls of these pathways result in outstanding purification of gaseous, liquid and solid alien additives. NMR imaging was successfully used to map the gas pathways inside the porous medium submerged into the liquid layer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.