178 resultados para oral environment stabilization
Resumo:
Mast cells are mobile granule-containing secretory cells that are distributed preferentially about the microvascular endothelium in oral mucosa and dental pulp. The enzyme profile of mast cells in oral tissues resembles that of skin, with most mast cells expressing the serine proteases tryptase and chymase. Mast cells in oral tissues contain the pro-inflammatory cytokine tumour necrosis factor-alpha in their granules, and release of this promotes leukocyte infiltration during evolving inflammation in several conditions, including lichen planus, gingivitis, pulpitis, and periapical inflammation, through induction of endothelial-leukocyte adhesion molecules. Mast cell synthesis and release of other mediators exerts potent immunoregulatory effects on other cell types, while several T-lymphocyte-derived cytokines influence mast cell migration and mediator release. Mast cell proteases may contribute to alterations in basement membranes in inflammation in the oral cavity, such as the disruptions that allow cytotoxic lymphocytes to enter the epithelium in oral lichen planus. A close relationship exists among mast cells, neural elements, and laminin, and this explains the preferential distribution of mast cells in tissues. Mast cells are responsive to neuropeptides and, through their interaction with neural elements, form a neural immune network with Langerhans cells in mucosal tissues. This facilitates mast cell degranulation in response to a range of immunological and non-immunological stimuli. Because mast cells play a pivotal role in inflammation, therapies that target mast cell functions could have value in the treatment of chronic inflammatory disorders in the oral cavity.
Resumo:
Background: Cell-mediated immune responses in oral lichen planus (OLP) may be regulated by cytokines and their receptors. Methods: In situ cytokine expression and in vitro cytokine secretion in OLP were determined by immunohistochemistry and ELISA. Resulults: The majority of subepithelial and intraepithelial mononuclear cells in OLP were CD8(+) . In some cases, intraepithelial CD8(+) cells were adjacent to degenerating keratinocytes. CD4(+) cells were observed mainly in the deep lamina propria with occasional CD4(+) cells close to basal keratinocytes. Mononuclear cells expressed IFN-gamma in the superficial lamina propria and TNF-alpha adjacent to basal keratinocytes. Basal keratinocytes expressed TNF-alpha as a continuous band. TNF R1 was expressed by mononuclear cells and basal and suprabasal keratinocytes. There was variable expression of TGF-beta1 in the subepithelial infiltrate while all intraepithelial mononuclear cells were TGF-beta1(-) . Keratinocytes in OLP stained weakly for TGF-beta1. Unstimulated OLP lesional T cells secreted IFN-gammain vitro . TNF-alpha stimulation down-regulated IFN-gamma secretion and up-regulated TNF-alpha secretion. IL-4, IL-10 and TGF-beta1 secretion were not detected. Conclusions: These data suggest the development of a T helper 1 immune response that may promote CD8(+) cytotoxic T-cell activity in OLP.
Resumo:
Increasingly, electropalatography (EPG) is being used in speech pathology research to identify and describe speech disorders of neurological origin. However, limited data currently exists that describes normal articulatory segment timing and the degree of variability exhibited by normal speakers when assessed with EPG. Therefore, the purpose of the current investigation was to use the Reading EPG3 system to quantify segmental timing values and examine articulatory timing variability for three English consonants. Ten normal subjects repeated ten repetitions of CV words containing the target consonants /t/, /l/, and /s/ while wearing an artificial palate. The target consonants were followed by the /i/ vowel and were contained in the carrier phrase 'I saw a __'. Mean duration of the approach, closure/constriction, and release phases of consonant articulation were calculated. In addition, inter-subject articulatory timing variability was investigated using descriptive graphs and intra-subject articulatory timing variability was investigated using a coefficient of variation. Results revealed the existence of intersubject variability for mean segment timing values. This could be attributed to individual differences in the suprasegmental features of speech and individual differences in oral cavity size and structure. No significant differences were reported for degree of intra-subject variability between the three sounds for these same phases of articulation. However, when this data set was collapsed, results revealed that the closure/constriction phase of consonant articulation exhibited significantly less intra-subject variability than both the approach and release phases. The stabilization of the tongue against the fixed structure of the hard palate during the closure phase of articulation may have reduced the levels of intra-subject variability.
Resumo:
The play of children with autistic spectrum disorder (ASD) is a valuable medium for assessment and intervention, and its analysis has the potential to aid diagnosis. This study investigated spontaneous play behavior and play object preferences for 24 preschool children with ASD in a typical occupational therapy clinical environment. Play behavior was rated and choice of play object noted at 10-second intervals from a 15-minute video recording of unstructured play. Statistical analyses indicated that play behavior was consistent with descriptions in the literature. In addition, the children demonstrated clear preferences for play objects in the form of popular characters (e.g., Thomas the Tank Engine) and those with sensorimotor properties. We propose that the inclusion of preferred play objects in a clinical environment may increase intrinsic motivation to play, and thereby enhance assessment and intervention.
Resumo:
We have developed a computational strategy to identify the set of soluble proteins secreted into the extracellular environment of a cell. Within the protein sequences predominantly derived from the RIKEN representative transcript and protein set, we identified 2033 unique soluble proteins that are potentially secreted from the cell. These proteins contain a signal peptide required for entry into the secretory pathway and lack any transmembrane domains or intracellular localization signals. This class of proteins, which we have termed the mouse secretome, included >500 novel proteins and 92 proteins
Resumo:
An approach based on a linear rate of increase in harvest index (141) with time after anthesis has been used as a simple means-to predict grain growth and yield in many crop simulation models. When applied to diverse situations, however, this approach has been found to introduce significant error in grain yield predictions. Accordingly, this study was undertaken to examine the stability of the HI approach for yield prediction in sorghum [Sorghum bicolor (L.) Moench]. Four field experiments were conducted under nonlimiting water. and N conditions. The experiments were sown at times that ensured a broad range in temperature and radiation conditions. Treatments consisted of two population densities and three genotypes varying in maturity. Frequent sequential harvests were used to monitor crop growth, yield, and the dynamics of 111. Experiments varied greatly in yield and final HI. There was also a tendency for lower HI with later maturity. Harvest index dynamics also varied among experiments and, to a lesser extent, among treatments within experiments. The variation was associated mostly with the linear rate of increase in HI and timing of cessation of that increase. The average rate of HI increase was 0.0198 d(-1), but this was reduced considerably (0.0147) in one experiment that matured in cool conditions. The variations found in IN dynamics could be largely explained by differences in assimilation during grain filling and remobilization of preanthesis assimilate. We concluded that this level of variation in HI dynamics limited the general applicability of the HI approach in yield prediction and suggested a potential alternative for testing.
Resumo:
Functional genomics is the systematic study of genome-wide effects of gene expression on organism growth and development with the ultimate aim of understanding how networks of genes influence traits. Here, we use a dynamic biophysical cropping systems model (APSIM-Sorg) to generate a state space of genotype performance based on 15 genes controlling four adaptive traits and then search this spice using a quantitative genetics model of a plant breeding program (QU-GENE) to simulate recurrent selection. Complex epistatic and gene X environment effects were generated for yield even though gene action at the trait level had been defined as simple additive effects. Given alternative breeding strategies that restricted either the cultivar maturity type or the drought environment type, the positive (+) alleles for 15 genes associated with the four adaptive traits were accumulated at different rates over cycles of selection. While early maturing genotypes were favored in the Severe-Terminal drought environment type, late genotypes were favored in the Mild-Terminal and Midseason drought environment types. In the Severe-Terminal environment, there was an interaction of the stay-green (SG) trait with other traits: Selection for + alleles of the SG genes was delayed until + alleles for genes associated with the transpiration efficiency and osmotic adjustment traits had been fixed. Given limitations in our current understanding of trait interaction and genetic control, the results are not conclusive. However, they demonstrate how the per se complexity of gene X gene X environment interactions will challenge the application of genomics and marker-assisted selection in crop improvement for dryland adaptation.