173 resultados para normalizing constant
Resumo:
Background: The aims of this study were to identify differences in oral cancer incidence and mortality between sexes, age groups, oral sites and Australian States and Territories and recent trends in oral cancer incidence, mortality and age-profile over time. Methods: Data were obtained from the Australian Institute for Health and Welfare and were age-standardized to the Australian 1991 Population Standard. Differences and trends were assessed with the Wilcoxon matched-pairs signed-ranks test and the Spearman correlation test, respectively. Results: In Australia in 1996, there were 2173 new oral cancers and 400 deaths due to oral cancer, the majority of oral cancers were in the 60+ age group, oral cancer affected men more than women (>2:1), lip cancer accounted for more than 50 per cent of oral cancers and the oral cancer mortality-to-incidence (M:I) ratio was greatest in ACT and NSW and least in QLD and SA. From 1983 to 1996, the annual incidence of lip cancer increased while the M:I ratio of lip cancer decreased. The annual incidence of cervical cancer decreased whereas the annual incidence of intra-oral cancer remained constant. The M:I ratio of cervical cancer was consistently lower than the MA ratio of intra-oral cancer. Conclusions; Reducing exposure to environmental carcinogens, increasing public awareness and population screening may reduce the incidence and mortality of oral cancer in Australia.
Resumo:
It is common for a real-time system to contain a nonterminating process monitoring an input and controlling an output. Hence, a real-time program development method needs to support nonterminating repetitions. In this paper we develop a general proof rule for reasoning about possibly nonterminating repetitions. The rule makes use of a Floyd-Hoare-style loop invariant that is maintained by each iteration of the repetition, a Jones-style relation between the pre- and post-states on each iteration, and a deadline specifying an upper bound on the starting time of each iteration. The general rule is proved correct with respect to a predicative semantics. In the case of a terminating repetition the rule reduces to the standard rule extended to handle real time. Other special cases include repetitions whose bodies are guaranteed to terminate, nonterminating repetitions with the constant true as a guard, and repetitions whose termination is guaranteed by the inclusion of a fixed deadline. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.
Resumo:
Field quantization in unstable optical systems is treated by expanding the vector potential in terms of non-Hermitean (Fox-Li) modes. We define non-Hermitean modes and their adjoints in both the cavity and external regions and make use of the important bi-orthogonality relationships that exist within each mode set. We employ a standard canonical quantization procedure involving the introduction of generalized coordinates and momenta for the electromagnetic (EM) field. Three-dimensional systems are treated, making use of the paraxial and monochromaticity approximations for the cavity non-Hermitean modes. We show that the quantum EM field is equivalent to a set of quantum harmonic oscillators (QHOs), associated with either the cavity or the external region non-Hermitean modes, and thus confirming the validity of the photon model in unstable optical systems. Unlike in the conventional (Hermitean mode) case, the annihilation and creation operators we define for each QHO are not Hermitean adjoints. It is shown that the quantum Hamiltonian for the EM field is the sum of non-commuting cavity and external region contributions, each of which can be expressed as a sum of independent QHO Hamiltonians for each non-Hermitean mode, except that the external field Hamiltonian also includes a coupling term responsible for external non-Hermitean mode photon exchange processes. The non-commutativity of certain cavity and external region annihilation and creation operators is associated with cavity energy gain and loss processes, and may be described in terms of surface integrals involving cavity and external region non-Hermitean mode functions on the cavity-external region boundary. Using the essential states approach and the rotating wave approximation, our results are applied to the spontaneous decay of a two-level atom inside an unstable cavity. We find that atomic transitions leading to cavity non-Hermitean mode photon absorption are associated with a different coupling constant to that for transitions leading to photon emission, a feature consequent on the use of non-Hermitean mode functions. We show that under certain conditions the spontaneous decay rate is enhanced by the Petermann factor.
Resumo:
This paper proposes an integrated methodology for modelling froth zone performance in batch and continuously operated laboratory flotation cells. The methodology is based on a semi-empirical approach which relates the overall flotation rate constant to the froth depth (FD) in the flotation cell; from this relationship, a froth zone recovery (R,) can be extracted. Froth zone recovery, in turn, may be related to the froth retention time (FRT), defined as the ratio of froth volume to the volumetric flow rate of concentrate from the cell. An expansion of this relationship to account for particles recovered both by true flotation and entrainment provides a simple model that may be used to predict the froth performance in continuous tests from the results of laboratory batch experiments. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Little is known of how client fish minimise the costs of cleaning behaviour while maximising ectoparasite removal by cleaner fish. Previous studies have found that abundance on fish and infestation behaviour of gnathiid isopods, the main parasite eaten by cleaner fish, varies diurnally. We examined whether reduced foraging is a cost of cleaning behaviour in clients and whether the behaviour of the client fish, the thick-lipped wrasse Hemigymnus melapterus, towards the cleaner fish Labroides dimidiatus varied diurnally to maximise ectoparasite removal, possibly in response to the diurnal changes in the abundance and infestation patterns of gnathiids. We found that during the midday and afternoon, client foraging rates were negatively related to the duration and frequency of inspections, suggesting that cleaning may, at some times of the day, be energetically costly to the client in terms of reduced foraging opportunities. Surprisingly, we found that the duration and frequency of inspections of clients by cleaners did not vary among diel time periods. A model of gnathiid dynamics on individual fish is proposed. It shows that the observed diurnal pattern in gnathiid abundance on fish can be generated with the constant duration and frequency of inspections that was observed in this study. Thus clients would not have more gnathiids removed by modifying their cleaning behaviour.
Resumo:
Chemosensory proteins (CSPs) are ubiquitous soluble small proteins isolated from sensory organs of a wide range of insect species, which are believed to be involved in chemical communication. We report the cloning of a honeybee CSP gene called ASP3c, as well as the structural and functional characterization of the encoded protein. The protein was heterologously secreted by the yeast Pichia pastoris using the native signal peptide. ASP3c disulfide bonds were assigned after trypsinolysis followed by chromatography and mass spectrometry combined with microsequencing. The pairing (Cys(I)-Cys(II), Cys(III)-Cys(IV)) was found to be identical to that of Schistocerca gregaria CSPs, suggesting that this pattern occurs commonly throughout the insect CSPs. CD measurements revealed that ASP3c mainly consists of alpha-helices, like other insect CSPs. Gel filtration analysis showed that ASP3c is monomeric at neutral pH. Using ASA, a fluorescent fatty acid anthroyloxy analogue as a probe, ASP3c was shown to bind specifically to large fatty acids and ester derivatives, which are brood pheromone components, in the micromolar range. It was unable to bind tested general odorants and other tested pheromones (sexual and nonsexual). This is the first report on a natural pheromonal ligand bound by a recombinant CSP with a measured affinity constant.
Resumo:
This paper characterizes when a Delone set X in R-n is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the heterogeneity of their distribution. For a Delone set X, let N-X (T) count the number of translation-inequivalent patches of radius T in X and let M-X (T) be the minimum radius such that every closed ball of radius M-X(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a gap in the spectrum of possible growth rates between being bounded and having linear growth, and that having sufficiently slow linear growth is equivalent to X being an ideal crystal. Explicitly, for N-X (T), if R is the covering radius of X then either N-X (T) is bounded or N-X (T) greater than or equal to T/2R for all T > 0. The constant 1/2R in this bound is best possible in all dimensions. For M-X(T), either M-X(T) is bounded or M-X(T) greater than or equal to T/3 for all T > 0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M-X(T) greater than or equal to c(n)T for all T > 0, for a certain constant c(n) which depends on the dimension n of X and is > 1/3 when n > 1.