175 resultados para cell phenotype
Resumo:
Chinese Hamster Ovary (CHO) cells are widely used for the large scale production of recombinant biopharmaceuticals. Growth of the CHO-K1 cell line has been demonstrated in serum-free medium containing insulin, transferrin and selenium. In an attempt to get autocrine growth in protein-free medium, DNA coding for insulin and transferrin production was transfected into CHO-K1 cells. Transferrin was expressed well, with clones secreting approximately 1000 ng/10(6)cells/24h. Insulin was poorly expressed, with rates peaking at 5 ng/10(6)cells/24h. Characterisation of the secreted insulin indicated that the CHO cells were incompletely processing the insulin molecule. Site-directed mutagenesis was used to introduce a furin (prohormone converting enzyme) recognition sequence into the insulin molecule, allowing the production of active insulin. However, the levels were still too low to support autocrine growth. Further investigations revealed insulin degrading activity (presumably due to the presence of insulin degrading enzymes) in the cytoplasm of CHO cells. To overcome these problems insulin-like growth factor I (instead of insulin) was transfected into the cells. IGF-1 was completely processed and expressed at rates greater than 500 ng/10(6)cells/24h. In this paper we report autonomous growth of the transfected CHO-K1 cell line expressing transferrin and IGF-1 in protein-free medium without the addition of exogenous growth factors. Growth rates and final cell densities of these cells were identical to that of the parent cell line CHO-K1 growing in insulin, transferrin, and selenium supplemented serum-free media.
Resumo:
The settling characteristics of cell debris and inclusion bodies prior to, and following, fractionation in a disc-stack centrifuge were measured using Cumulative Sedimentation Analysis (CSA) and Centrifugal Disc photosedimentation (CDS). The impact of centrifuge feedrate and repeated homogenisation on both cell debris and inclusion body collection efficiency was investigated. Increasing the normalised centrifuge feedrate (Q/Sigma) from 1.32 x 10(-9) m s(-1) to 3.97 x 10(-9) m s(-1) leads to a 36% increase in inclusion body paste purity. Purity may also be improved by repeated homogenisation. Increasing the number of homogeniser passes results in smaller cell debris size whilst leaves inclusion body size unaltered. At a normalised centrifuge feedrate of 2.65 x 10(-9) m s(-1), increasing the number of homogeniser passes from two (2) to ten (10) improved overall inclusion body paste purity by 58%. Grade-efficiency curves for both the cell debris and inclusion bodies have also been generated in this study. The data are described using an equation developed by Mannweiler (1989) with parameters of k = 0.15-0.26 and n = 2.5-2.6 for inclusion bodies, and k = 0.12-0.14 and n = 2.0-2.2 for cell debris. This is the first accurate experimentally-determined grade efficiency curve for cell debris. Previous studies have simply estimated debris grade efficiency curves using an approximate debris size distribution and grade efficiency curves determined with 'ideal particles' (e.g. spherical PVA particles). The findings of this study may be used to simulate and optimise the centrifugal fractionation of inclusion bodies from cell debris.
Resumo:
A distinct type of cellular organization was found in two species of the planctomycete genus Pirellula, Pirellula marina and Pirellula staleyi. Both species possess two distinct regions within the cell which are separated by a single membrane. The major region of the cell, the pirellulosome, contains the fibrillar condensed nucleoid. The other area, the polar cap region, forms a continuous layer surrounding the entire pirellulosome and displays a cap of asymmetrically distributed material at one cell pole. Immuno- and cytochemical-labelling of P. marina demonstrated that DNA is located exclusively within the pirellulosome; cell RNA is concentrated in the pirellulosome, with some RNA also located in the polar cap region.
Resumo:
Herpesviruses, such as murine and human cytomegalovirus (MCMV and HCMV), can establish a persistent infection within the host and have diverse mechanisms as protection from host immune defences'. Several herpesvirus genes that are homologous to host immune modulators have been identified, and are implicated in viral evasion of the host immune response(2,3). The discovery of a viral major histocompatibility complex (MHC) class I homologue, encoded by HCMV(4), led to speculation that it might function as an immune modulator and disrupt presentation of peptides by MHC class I to cytotoxic T cells(5). However, there is no evidence concerning the biological significance of this gene during viral infection. Recent analysis of the MCMV genome has also demonstrated the presence of a MHC class I homologue(6). Here we show that a recombinant MCMV,in which. the gene encoding the class I homologue has been disrupted, has severely restricted replication during the acute stage of infection compared with wild-type MCMV, We demonstrate by in vivo depletion studies that natural killer (NK) cells are responsible for the attenuated phenotype of the mutant. Thus the viral MHC dass I homologue contributes to immune evasion through interference with NK cell-mediated clearance.
Resumo:
Myelin proteolipid protein (PLP) contains 2 immunodominant encephalitogenic epitopes in SJL mice, namely PLP residues 139-151 and 178-191. DM20, a minor isoform of PLP, lacks residues 116-150 and consequently contains only the single major encephalitogenic epitope 178-191. However, it has been found previously that bovine DM20 is not encephalitogenic in SJL mice. Since residue 188 within peptide 178-191 is phenylalanine (F) in murine DM20 and alanine (A) in bovine DM20, we tested the effect of this difference on the immune responses and induction of EAE. SJL mice were immunized with either highly purified murine or bovine DM20. Residues 178-191 were found to be immunodominant for each, but only murine and not bovine DM20 was encephalitogenic. A synthetic peptide corresponding to the murine 178-191 sequence (F188) was also encephalitogenic, whereas the peptide corresponding to the bovine sequence (A188) was not. Both F188 and A188 bind with high affinity to I-A(s) and both are recognized by the SJL T cell repertoire. A188-specific T cell lines reacted to both A188 and F188, but F188-specific T cell lines were not stimulated by A188. F188-specific T cell lines produced mRNA for the Th1 cytokines IL2 and IFN gamma and, in passive transfer experiments, were encephalitogenic upon stimulation with F188, but not A188. In contrast, A188-specific T cell lines produced mRNA for IL4, IL5 and IL10, in addition to IL2 and IFN gamma, and were not encephalitogenic after stimulation with either F188 or A188. Cotransfer of A188-specific T cell lines with F188-specific T cell lines resulted in protection from EAE. Thus, A188 induces a functionally different phenotype of T cells from that induced by F188. Taken together these data suggest that the failure of bovine DM20 to induce EAE may be attributable to induction of protective rather than pathogenic T cells by the immunodominant epitope.
Resumo:
Cell-wall polysaccharides from six species of red algae of the genus Callophycus were mainly galactans comprised predominantly of galactose (Gal) and 3,6-anhydrogalactose (AnGal), and were rich in pyruvate and sulfate. The Fourier Transform Infrared (FTIR) spectra of the polysaccharides superficially resembled that of alpha-carrageenan (composed of the repeating disaccharide carrabiose 2-sulfate), with major bands of absorption indicative of if-linked AnGal, axial 2-sulfate on 4-linked AnGal, and unsulfated, 3-linked Gal. The FTIR spectra of solutions of Callophycus polysaccharides in D2O-phosphate buffer displayed absorption, corresponding to the carboxylate anion of the pyruvate acetal substituent. Methylation analysis showed that 3,4,6-linked Galp (interpreted as 4,6-pyruvated, 3-linked Galp) and 2,4-linked AnGalp (interpreted as 4-linked AnGalp 2-sulfate) were the dominant links, together with significant quantities of 3-linked Galp. Proton-decoupled C-13 nuclear magnetic resonance (NMR) spectroscopy showed the polysaccharides to be composed predominantly of pyruvated carrageenans. The C-13 NMR spectra were completely assigned by a J-modulated spin-echo pulse sequence and 2D experiments employing gradient Heteronuclear Multiple Bond Correlation (HMBC), C-13/H-1 Heteronuclear Multiple Quantum Coherence (HMQC), and HMQC Total Correlation Spectroscopy (HMQC-TOCSY). The Callophycus galactans thus consist predominantly of the novel repeating disaccharide 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate and minor amounts of the alpha-carrageenan repeating unit (carrabiose 2-sulfate), and other structural variations. (C) 1997 Elsevier Science Ltd.
Resumo:
Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4 degrees C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with BA (12 mg/kg, ip) and kept at 4 degrees C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after RA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fos B, jun B, and egr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment (jun D). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of ICA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death. (C) 1997 Academic Press.