264 resultados para biophysics
Resumo:
In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel ( GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.
Resumo:
There is evidence to suggest that plasma membrane Ca2+-ATPase (PMCA) isoforms are important mediators of mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184135 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Cells respond to genotoxic insults such as ionizing radiation by halting in the G(2) phase of the cell cycle. Delayed cell death (mitotic death) can occur when the cell is released from G(2), and specific spindle defects form endopolyploid cells (endoreduplication/tetraploidy). Enhanced G(2) chromosomal radiosensitivity has been observed in many cancers and genomic instability syndromes, and it is manifested by radiation-induced chromatid aberrations observed in lymphocytes of patients. Here we compare the G(2) chromosomal radiosensitivity in prostate patients with benign prostatic hyperplasia (BPH) or prostate cancer with disease-free controls. We also investigated whether there is a correlation between G(2) chromosomal radiosensitivity and aneuploidy (tetraploidy and endoreduplication), which are indicative of mitotic cell death. The G(2) assay was carried out on all human blood samples. Metaphase analysis was conducted on the harvested chromosomes by counting the number of aberrations and the mitotic errors (endoreduplication/tetraploidy) separately per 100 metaphases. A total of 1/14 of the controls were radiosensitive in G(2) compared to 6/15 of the BPH patients and 15/17 of the prostate cancer patients. Radiation-induced mitotic inhibition was assessed to determine the efficacy of G(2) checkpoint control in the prostate patients. There was no significant correlation of G(2) radiosensitivity scores and mitotic inhibition in BPH patients (P = 0.057), in contrast to prostate cancer patients, who showed a small but significant positive correlation (P = 0.029). Furthermore, there was no significant correlation between G(2) radiosensitivity scores of BPH patients and endoreduplication/ tetraploidy (P = 0.136), which contrasted with an extremely significant correlation observed in prostate cancer patients (P < 0.0001). In conclusion, cells from prostate cancer patients show increased sensitivity to the induction of G(2) aberrations from ionizing radiation exposure but paradoxically show reduced mitotic indices and aneuploidy as a function of aberration frequency.
Resumo:
X-ray crystallography is the most powerful method for determining the three-dimensional structure of biological macromolecules. One of the major obstacles in the process is the production of high-quality crystals for structure determination. All too often, crystals are produced that are of poor quality and are unsuitable for diffraction studies. This review provides a compilation of post-crystallization methods that can convert poorly diffracting crystals into data-quality crystals. Protocols for annealing, dehydration, soaking and cross-linking are outlined and examples of some spectacular changes in crystal quality are provided. The protocols are easily incorporated into the structure-determination pipeline and a practical guide is provided that shows how and when to use the different post-crystallization treatments for improving crystal quality.
Resumo:
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer ( FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.
Resumo:
Pulse oximetry is commonly used as an arterial blood oxygen saturation (SaO(2)) measure. However, its other serial output, the photoplethysmography (PPG) signal, is not as well studied. Raw PPG signals can be used to estimate cardiovascular measures like pulse transit time (PTT) and possibly heart rate (HR). These timing-related measurements are heavily dependent on the minimal variability in phase delay of the PPG signals. Masimo SET (R) Rad-9 (TM) and Novametrix Oxypleth oximeters were investigated for their PPG phase characteristics on nine healthy adults. To facilitate comparison, PPG signals were acquired from fingers on the same hand in a random fashion. Results showed that mean PTT variations acquired from the Masimo oximeter (37.89 ms) were much greater than the Novametrix (5.66 ms). Documented evidence suggests that I ms variation in PTT is equivalent to I mmHg change in blood pressure. Moreover, the PTT trend derived from the Masimo oximeter can be mistaken as obstructive sleep apnoeas based on the known criteria. HR comparison was evaluated against estimates attained from an electrocardiogram (ECG). Novametrix differed from ECG by 0.71 +/- 0.58% (p < 0.05) while Masimo differed by 4.51 +/- 3.66% (p > 0.05). Modem oximeters can be attractive for their improved SaO(2) measurement. However, using raw PPG signals obtained directly from these oximeters for timing-related measurements warrants further investigations.
Resumo:
Photopyroelectric spectroscopy (PPE) was used to study the thermal and optical properties of melanins. The photopyroelectric intensity signal and its phase were independently measured as a function of wavelength and chopping frequency for a given wavelength in the saturation part of the PPE spectrum. Equations for both the intensity and the phase of the PPE signal were used to fit the experimental results. From these fits we obtained for the first time, with great accuracy, the thermal diffusivity coefficient, the thermal conductivity, and the specific heat of the samples, as well as a value for the condensed phase optical gap, which we found to be 1.70 eV. (c) 2005 American Institute of Physics.
Resumo:
Intra-abdominal pressure (IAP) increases during many tasks and has been argued to increase stability and stiffness of the spine. Although several studies have shown a relationship between the IAP increase and spinal stability, it has been impossible to determine whether this augmentation of mechanical support for the spine is due to the increase in IAP or the abdominal muscle activity which contributes to it. The present study determined whether spinal stiffness increased when IAP increased without concurrent activity of the abdominal and back extensor muscles. A sustained increase in IAP was evoked by tetanic stimulation of the phrenic nerves either. unilaterally or bilaterally at 20 Hz (for 5 s) via percutaneous electrodes in three subjects. Spinal stiffness was measured as the force required to displace an indentor over the L4 or L2 spinous process with the subjects lying prone. Stiffness was measured as the slope of the regression line fitted to the linear region of the force-displacement curve. Tetanic stimulation of the diaphragm increased IAP by 27-61% of a maximal voluntary pressure increase and increased the stiffness of the spine by 8-31% of resting levels. The increase in spinal stiffness was positively correlated with the size of the IAP increase. IAP increased stiffness at L2 and L4 level. The results of this:study provide evidence that the stiffness of the lumbar spine is increased when IAP is elevated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Parabens are alkyl esters of p-hydroxybenzoic acid used as preservatives in a wide range of food, pharmaceutical, and cosmetic products (Soni et al. Food Chem. Toxicol. 39:513-532, 2001). Despite their common use for over 50 years, their mechanism of action is still unclear. In this study we examined the effects of ethyl and propyl paraben, on gating of the E. coli mechanosensitive channel of large conductance (MscL) reconstituted into azolectin liposomes. We found that propyl and ethyl paraben spontaneously activate MscL. Moreover, the addition of propyl paraben caused an increase in MscL activity and the lowering Of P-1/2, the pressure at which the MscL was opened 50% of the time, the AGO, the free energy required to open the MscL, and the parameter a, which describes the channel sensitivity to pressure. In addition, in silico studies showed that propyl paraben binds to the channel gate of the MscL. The mechanosensitive channel of small conductance was also found to be spontaneously activated by parabens. In summary, our study indicates that one of the previously unidentified mechanisms of action of parabens as antimicrobial agents is via an interaction with the mechanosensitive channels to upset the osmotic gradients in bacteria.
Resumo:
Proteolytic, cleavage in an exposed loop of human tartrate-resistant acid phosphatase (TRAcP) with trypsin leads to a significant increase in activity. At each pH value between 3.25 and 8.0 the cleaved enzyme is more active. Substrate specificity is also influenced by proteolysis. Only the cleaved form is able to hydrolyze unactivated substrates efficiently, and at pH > 6 cleaved TRAcP acquires a marked preference for ATP. The cleaved enzyme also has altered sensitivity to inhibitors. Interestingly, the magnitude and mode of inhibition by fluoride depends not only on the proteolytic state but also pH. The combined kinetic data imply a role of the loop residue D158 in catalysis in the cleaved enzyme. Notably, at low pH this residue may act as a proton donor for the leaving group. In this respect the mechanism of cleaved TRAcP resembles that of sweet potato purple acid phosphatase. (c) 2005 Elsevier Inc. Ail rights reserved.
Resumo:
Six steers (3/4 Charolaisx1/4 Brahman) (mean body weight 314 +/- 27 kg) and six spayed heifers (3/5 Shorthornx2/5 Red Angus) (mean body weight 478 +/- 30 kg) were used to determine the effects of climatic conditions and hormone growth promotants (HGP) on respiration rate (RR; breaths/min), pulse rate (beats/min), rectal temperature (RT; degrees C), and heat production (HP; kJ). Cattle were exposed to the following climatic conditions prior to implantation with a HGP and then again 12 days after implantation: 2 days of thermoneutral conditions (TNL) [21.9 +/- 0.9 degrees C ambient temperature (T-A) and 61.7 +/- 22.1% relative humidity (RH)] then 2 days of hot conditions [HOT; 29.2 +/- 4 degrees C (T-A) and 78.3 +/- 13.2% (RH)], then TNL for 3 days and then 2 days of cold conditions [COLD; 17.6 +/- 0.9 degrees C (T-A) and 63.4 +/- 1.8% (RH); cattle were wet during this treatment]. The HGP implants used were: estrogenic implant (E), trenbolone acetate implant (TBA), or both (ET). Both prior to and following administration of HGP, RRs were lower (P < 0.05) on cold days and greater (P < 0.05) on hot days compared to TNL. On hot days, RTs, were 0.62 degrees C higher after compared to before implanting. Across all conditions, RTs were > 0.5 degrees C greater (P < 0.05) for E cattle than for TBA or ET cattle. On cold days, RTs of steers were > 0.8 degrees C higher than for the heifers, while under TNL and HOT, RTs of steers were 0.2-0.35 degrees C higher than those of heifers. Prior to implantation, HP per hour and per unit of metabolic body weight was higher (P < 0.05) for cattle exposed to hot conditions, when compared to HP on cold days. After implantation, HP was greater (P < 0.05) on hot days than on cold days. Under TNL, ET cattle had the lowest HP and greatest feed intake. On hot days, E cattle had the lowest HP, and the highest RT; therefore, if the potential exists for cattle death from heat episodes, the use of either TBA or ET may be preferred. Under cold conditions HP was similar among implant groups.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). Tile study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-a was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 angstrom resolution. Preliminary electron density calculations show that the ligands are present in the crystals. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The crystal structure of human phenylethanolamine N-methyltransferase (hPNMT) reveals a disulfide- linked dimer, despite the presence of reducing agent in the crystallisation conditions. By removing the reducing agent, hPNMT crystals grow more rapidly and at lower protein concentrations. However, it was unclear whether the disulfide bonds are only present in the crystal form or whether these affect enzyme activity. The solution oligomeric state of hPNMT was investigated using biochemical techniques and activity assays. We found that in the absence of reducing agent, hPNMT forms dimers in solution. Furthermore, the solution dimer of hPNMT incorporates disulfide bonds, since this form is sensitive to reducing agent. The C48A and C139A mutants of hPNMT, which are incapable of forming the disulfide bond observed in the crystal structure, have a decreased propensity to form dimer in solution. Those dimers that do form are also sensitive to reducing agent. Further, the C48A/C139A double mutant shows only monomeric behaviour. Both dimeric and monomeric hPNMT, as well as mutants have wildtype enzyme activity. These results show that a variety of disulfides, including those observed in the crystal structure, can form in solution. In addition, disulfide-linked dimers are as active as the monomeric enzyme indicating that the crystal structure of the protein is a valid target for inhibitor design. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.
Resumo:
Developmental- and tissue-specific expression of globin genes is mediated by a few key elements within the proximal promoter of each gene. DNA-binding assays previously identified NF-Y, GATA-1, C/EBP beta and C/EBP gamma as candidate regulators of beta-globin transcription via the CCAAT-box, a promoter element situated between CACC- and TATA-boxes. We have identified C/EBP delta as an additional beta-globin CCAAT-box binding protein. In reporter assays, we show that C/EBP delta can co-operate with EKLF, a CACC-box binding protein, to activate the beta-globin promoter, whereas C/EBP gamma inhibits the transcriptional activity of EKLF in this assay. (c) 2005 Elsevier B.V. All rights reserved.