217 resultados para anode striped twin-fold IC
Resumo:
The influence of initial perturbation geometry and material propel-ties on final fold geometry has been investigated using finite-difference (FLAC) and finite-element (MARC) numerical models. Previous studies using these two different codes reported very different folding behaviour although the material properties, boundary conditions and initial perturbation geometries were similar. The current results establish that the discrepancy was not due to the different computer codes but due to the different strain rates employed in the two previous studies (i.e. 10(-6) s(-1) in the FLAC models and 10(-14) s(-1) in the MARC models). As a result, different parts of the elasto-viscous rheological field were bring investigated. For the same material properties, strain rate and boundary conditions, the present results using the two different codes are consistent. A transition in Folding behaviour, from a situation where the geometry of initial perturbation determines final fold shape to a situation where material properties control the final geometry, is produced using both models. This transition takes place with increasing strain rate, decreasing elastic moduli or increasing viscosity (reflecting in each case the increasing influence of the elastic component in the Maxwell elastoviscous rheology). The transition described here is mechanically feasible but is associated with very high stresses in the competent layer (on the order of GPa), which is improbable under natural conditions. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Reef fishes present the observer with the most diverse and stunning assemblage of animal colours anywhere on earth. The functions of some of these colours and their combinations are examined using new non-subjective spectrophotometer ic measurements of the colours of fishes and their habitat. Conclusions reached are as follows: (i) the spectra of colours in high spatial frequency patterns are often well designed to be very conspicuous to a colour vision system at close range but well camouflaged at a distance; (ii) blue and yellow the most frequently used colours in reef fishes, may be good for camouflage or communication depending on the background they are viewed against; and (iii) reef fishes use a combination of colour and behaviour to regulate their conspicuousness and crypsis.
Resumo:
Members of the billfish family are highly visual predatory teleosts inhabiting the open ocean. Little is known about their visual abilities in detail, but past studies have indicated that these fishes were:ere likely to be monochromats. This study however, presents evidence of two anatomically distinct cone types in billfish. The cells are arranged in a regular mosaic pattern of single and twin cones as in many fishes, and this arrangement suggests that the different cone types also show different spectral sensitivity, which is the basis for colour vision. First measurements using microspectrophotometry (MSP) revealed a peak absorption of the rod pigment at 484 nm, indicating that MSP, despite technical difficulties, will be a decisive tool in proving colour vision in these offshore fishes. When hunting, billfish such as the sailfish flash bright blue bars on their sides. This colour reflects largely in ultraviolet (UV) light at 350 nm as revealed by spectrophotometric measurements. Billfish lenses block light of wavelengths below 400 nm, presumably rendering the animal blind to the UV component of its own body colour. Interestingly at least two prey species of billfish have lenses transmitting light in the UV waveband and are therefore likely to perceive a large fraction of the UV peak found in the blue bar of the sailfish. The possible biological significance of this finding is discussed.
Resumo:
Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2.375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling molecules salicylic acid (SA), methyl jasmonate (MJ), or ethylene, Substantial changes (up- and down-regulation) in the steady-state abundance of 705 mRNAs were observed in response to one or more of the treatments, including known and putative defense-related genes and 106 genes with no previously described function or homology, In leaf tissue inoculated with A. brassicicola, the abundance of 168 mRNAs was increased more than 2.5-fold, whereas that of 39 mRNAs was reduced. Similarly, the abundance of 192, 221, and 55 mRNAs was highly (>2.5-fold) increased after treatment with SA, MJ, and ethylene, respectively. Data analysis revealed a surprising level of coordinated defense responses, including 169 mRNAs regulated by multiple treatments/defense pathways. The largest number of genes coinduced (one of four induced genes) and corepressed was found after treatments with SA and MJ. In addition, 50% of the genes induced by ethylene treatment were also induced by MJ treatment. These results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.
Resumo:
OBJECTIVE: This study ascertains the relative contributions of genetics and environment in determining methane emission in humans and rats. There is considerable interest in the factors determining the microbial species that inhabit the colon. Methanogens, which are archaebacteria, are an easily detected colonic luminal bacteria because they respire methane. They are present in some but not all human colons and lower animal hindguts. Opinion varies on the nature of the factors influencing this ecology with some studies proposing the existence of host genetic influences. METHODS: Methane emission was measured in human twin pairs by gas chromatography, and structural equation modeling was used to determine the proportion of genetic and environmental determinants. The importance of the timing of environmental effects and rat strain on the trait of methane emission were ascertained by experiments with cohabiting methanogenic and nonmethanogenic rats. RESULTS: Analysis of breath samples from 274 adolescent twin pairs and their families indicated that the major influences on the trait of methane emission are the result of shared (53%, 95% confidence interval 39-61) and unique environmental (47%, 95% confidence interval 38-56) effects. No significant autosomal genetic effects were detected, but as observed in other studies, men (37%) were less likely to excrete methane in their breath than women (63%). Investigation of methane emission in rats indicated that environmental effects in this animal are most potent during the weaning period, with stable gut microbial ecology thereafter for some but not all rat strains. CONCLUSIONS: These results are consistent with shared and unique environmental factors being the main determinants of the ecology of this colonic microbe. (Am J Gastroenterol 2000;95:2872-2879. (C) 2000 by Am. Coll. of Gastroenterology).
Resumo:
Objective: The objective of this study was to examine trends in suicide among 15-34-year-olds living in Australian metropolitan and non-metropolitan areas between 1988 and 1997. Method: Suicide and population data were obtained from the Australian Bureau of Statistics. We calculated overall and method-specific suicide rates for 15-24 and 25-34-year-old males and females separately, according to area of residence defined as non-metropolitan (less than or equal to 20 000 people) or metropolitan. Results: Between 1988 and 1997 suicide rates in 15-24-year-old non-metropolitan males were consistently 50% higher than metropolitan 15-24-year-olds. In 1995-1997, for example, the rates were: 38.2 versus 25.1 per 100 000 respectively (p < 0.0001). The reverse pattern was seen in 25-34-year-old females with higher rates in metropolitan areas (7.5 per 100 000) compared with non-metropolitan areas (6.1 per 100 000, p = 0.21) in 1995-1997. There were no significant differences according to area of residence in 25-34-year-old males or 15-24-year-old females. Over the years studied we found no clear evidence that suicide rates increased to a greater extent in rural than urban areas. Rates of hanging suicide have approximately doubled in both sexes and age groups in both settings over this time. Despite an approximate halving in firearm suicide, rates remain 3-fold higher among non-metropolitan residents. Conclusion: Non-metropolitan males aged 15-24 years have disproportionately higher rates of suicide than their metropolitan counterparts. Reasons for this require further investigation. Hanging is now the most favoured method of non-metropolitan suicide replacing firearms from 10 years ago. Although legislation may reduce method-specific suicide the potential for method-substitution means that overall rates may not fall. More comprehensive interventions are therefore required.
Resumo:
The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BR IC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226-651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194-520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199-574 mg/day) and 284 mg/day for girls (58 mg/day; 171-459 mg/day). These longitudinal results are 27-34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium.
Resumo:
omega -Conotoxins selective for N-type calcium channels are useful in the management of severe pain. In an attempt to expand the therapeutic potential of this class, four new omega -conotoxins (CVIA-D) have been discovered in the venom of the piscivorous cone snail, Conus catus, using assay-guided fractionation and gene cloning. Compared with other omega -conotoxins, CVID has a novel loop 4 sequence and the highest selectivity for N-type over P/Q-type calcium channels in radioligand binding assays. CVIA-D also inhibited contractions of electrically stimulated rat vas deferens. In electrophysiological studies, omega -conotoxins CVID and MVIIA had similar potencies to inhibit current through central (alpha (1B-d)) and peripheral (alpha (1B-b)) splice variants of the rat N-type calcium channels when coexpressed with rat beta (3) in Xenopus oocytes, However, the potency of CVID and MVIIA increased when alpha (1B-d) and alpha (1B-b) were expressed in the absence of rat beta (3), an effect most pronounced for CVID at alpha (1B-d) (up to 540-fold) and least pronounced for MVIIA at alpha (1B-d) (3-fold). The novel selectivity of CVID may have therapeutic implications. H-1 NMR studies reveal that CMD possesses a combination of unique structural features, including two hydrogen bonds that stabilize loop 2 and place loop 2 proximal to loop 4, creating a globular surface that is rigid and well defined.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).
Resumo:
Human N-acetyltransferase 1 (NAT1) is a widely distributed enzyme that catalyses the acetylation of arylamine and hydrazine drugs as well as several known carcinogens, and so its levels in the body may have toxicological importance with regard to drug toxicity and cancer risk. Recently, we showed that p-aminobenzoic acid (PABA) was able to down-regulate human NAT1 in cultured cells, but the exact mechanism by which PABA acts remains unclear. In the present study, we investigated the possibility that PABA-induced down-regulation involves its metabolism to N-OH-PABA, since N-OH-AAF functions as an irreversible inhibitor of hamster and rat NAT1. We show here that N-OH-PABA irreversibly inactivates human NAT1 both in cultured cells and cell cytosols in a time- and concentration-dependent manner. Maximal inactivation in cultured cells occurred within 4 hr of treatment, with a concentration of 30 muM reducing activity by 60 +/- 7%. Dialysis studies showed that inactivation was irreversible, and cofactor (acetyl coenzyme A) but not substrate (PABA) completely protected against inactivation, indicating involvement of the cofactor-binding site. In agreement with these data, kinetic studies revealed a 4-fold increase in cofactor K-m, but no change in substrate K-m for N-OH-PABA-treated cytosols compared to control. We conclude that N-OH-PABA decreases NAT1 activity by a direct interaction with the enzyme and appears to be a result of covalent modification at the cofactor-binding site. This is in contrast to our findings for PABA, which appears to reduce NAT1 activity by down-regulating the enzyme, leading to a decrease in NAT1 protein content. BIOCHEM PHARMACOL 60;12: 1829-1836, 2000. (C) 2000 Elsevier Science Inc.
Resumo:
Normal Sprague-Dau ley rat mammary gland epithelial cells and mammary gland carcinomas induced by 2-amino-1 -methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen found in the diet, were examined for the expression of peroxisome proliferator-activated receptor alpha (PPAR alpha). PPAR alpha mRNA and protein was detected in normal and tumor tissue by reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. By quantitative RT-PCR, carcinomas had a 12-fold higher expression than control mammary glands, a statistically significant difference. PPAR alpha expression was examined in carcinomas and normal tissues from rats on high fat (23.5/% corn oil) and low fat (5% corn oil) diets. Although neither carcinomas, nor control tissues showed statistically significant differences between the two diet groups, PPAR alpha expression was the highest in carcinomas from rats on the high fat diet. The expression of PPAR alpha in normal mammary gland and its significant elevation in mammary gland carcinomas raises the possibility of its involvement in mammary gland physiology and pathophysiology. (C) 2000 Published by Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The 3-dimensionaI structure determination of rat phenylalanine hydroxylase (PAH) has identified potentially important amino acids lining the active site cleft with the majority of these having hydrophobic side-chains including several with aromatic side chains. Here we have analyzed the effect on rat PAH enzyme kinetics of in vitro mutagenesis of a number of these amino acids lining the PAH active site. Mutation of F299, Y324, F331, and Y343 caused a significant decrease in enzyme activity but no change in the K-m for substrate or cofactor. me conclude that these aromatic residues are essential for activity but are not significantly involved in binding of the substrate or cofactor. in contrast the PAH mutant, S349T, showed an 18-fold increase in K-m for phenylalanine, showing the first functional evidence that this residue was binding at or near the phenylalanine binding site. This confirms the recently published model for the binding of phenylalanine to the PAH active site that postulated S349 interacts with the amino group on the main chain of the phenylalanine molecule. This result differs with that found for the equivalent mutation (S395T), in the closely related tyrosine hydroxylase, which had no effect on substrate K-m, showing that while the architecture of the two active sites are very similar the amino acids that bind to the respective substrates are different. (C) 2000 Academic Press.
Resumo:
As part of a large ongoing project, the Memory, Attention and Problem Solving (MAPS) study, we investigated whether genetic variability explains some of the variance in psychophysiological correlates of brain function, namely, the P3 and SW components of event-related potentials (ERPs). These ERP measures are minute time recordings of brain processes and, because they reflect fundamental cognitive processing, provide a unique window on the millisecondto- millisecond transactions that occur at the cognitive level and taking place in the human brain. The extent to which the variance in P3 and SW components is influenced by genetic factors was examined in 350 identical and nonidentical twin pairs aged 16 years. ERPs were recorded from 15 scalp electrodes during the performance of a visuospatial delayed response task that engages working memory. Multivariate genetic analyses using MX were used to estimate genetic and environmental influences on individual differences in brain functioning and to identify putative genetic factors common to the ERP measures and psychometric IQ. For each of the ERP measures, correlation among electrode sites was high, a spatial pattern was evident, and a large part of the genetic variation in the ERPs appeared to be mediated by a common genetic factor. Moderate within-pair concordance in MZ pairs was found for all ERP measures, with higher correlations found for P3 than SW, and the MZ twin pair correlations were approximately twice the DZ correlations, suggesting a genetic influence. Correlations between ERP measures and psychometric IQ were found and, although moderately low, were evident across electrode site. The analyses show that the ERP components, P3 and SW, are promising phenotypes of the neuroelectrical activity of the brain and have the potential to be used in linkage and association analysis in the search for QTLs influencing cognitive function.
Resumo:
The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degreesC for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degreesC, those exposed to heat stress (42 degreesC for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate. hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.
Resumo:
The immunophilins, cyclophilin 40 (CyP40) and FKBP52, are associated with the unactivated estrogen receptor in mutually exclusive heterocomplexes and may differentially modulate receptor activity, We have recently shown that CyP40 and FKBP52 mRNA's are differentially elevated in breast carcinomas compared with normal breast tissue. Other studies suggest that such alterations ill the ratio of immunophilins might potentially influence steroid receptor function. Studies were therefore initiated to investigate the influence of estradiol on CyP40 and FKBP52 expression in MCF-7 breast cancer cells. Over a 24-h-treatment period with estradiol, CyP40 and FKBP52 mRNA expression was increased approximately five- and 14-fold, respectively. The corresponding protein levels were also elevated in comparison to controls. The antiestrogen, ICI 182,780, was an antagonist for CyP40 and FKBP52 mRNA induction. Cycloheximide treatment did not inhibit this increased immunophilin expression, suggesting that estradiol-mediated activation is independent off de novo protein synthesis. Treatment of MCF-7 cells with estradiol resulted in an increased half-life of both CyP40 and FKBP52 mRNA, as determined by actinomycin D studies. These results suggest that estradiol regulates CyP40 and FKBP52 mRNA expression through both transcriptional and posttranscriptional mechanisms. (C) 2001 Academic Press.