191 resultados para Twin boundaries
Resumo:
Background: Several studies have shown that variation in serum gamma-glutamyltransferase (GGT) in the population is associated with risk of death or development of cardiovascular disease, type 2 diabetes, stroke, or hypertension. This association is only partly explained by associations between GGT and recognized risk factors. Our aim was to estimate the relative importance of genetic and environmental sources of variation in GGT as well as genetic and environmental sources of covariation between GGT and other liver enzymes and markers of cardiovascular risk in adult twin pairs. Methods: We recruited 1134 men and 2241 women through the Australian Twin Registry. Data were collected through mailed questionnaires, telephone interviews, and by analysis of blood samples. Sources of variation in GGT, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) and of covariation between GGT and cardiovascular risk factors were assessed by maximum-likelihood model-fitting. Results: Serum GGT, ALT, and AST were affected by additive genetic and nonshared environmental factors, with heritabilities estimated at 0.52, 0.48, and 0.32, respectively. One-half of the genetic variance in GGT was shared with ALT, AST, or both. There were highly significant correlations between GGT and body mass index; serum lipids, lipoproteins, glucose, and insulin; and blood pressure. These correlations were more attributable to genes that affect both GGT and known cardiovascular risk factors than to environmental factors. Conclusions: Variation in serum enzymes that reflect liver function showed significant genetic effects, and there was evidence that both genetic and environmental factors that affect these enzymes can also affect cardiovascular risk. (C) 2002 American Association for Clinical Chemistry.
Resumo:
Background Twin and family studies have shown that genetic effects explain a relatively high amount of the phenotypic variation in blood pressure. However, many studies have not been able to replicate findings of association between specific polymorphisms and diastolic and systolic blood pressure. Methods In a structural equation-modelling framework the authors investigated longitudinal changes in repeated measures of blood pressures in a sample of 298 like-sexed twin pairs from the population-based Swedish Twin Registry. Also examined was the association between blood pressure and polymorphisms in the angiotensin-I converting enzyme and the angiotensin 11 receptor type 1 with the 'Fulker' test Both linkage and association were tested simultaneously revealing whether the polymorphism is a Quantitative Trait Locus (QTL) or in linkage disequilibrium with the QTL. Results Genetic influences explained up to 46% of the phenotypic variance in diastolic and 63% of the phenotypic variance in systolic blood pressure. Genetic influences were stable over time and contributed up to 78% of the phenotypic correlation in both diastolic and systolic blood pressure. Non-shared environmental effects were characterised by time specific influences and little transmission from one time point to the next. There was no significant linkage and association between the polymorphisms and blood pressure. Conclusions There is a considerable genetic stability in both diastolic and systolic blood pressure for a 6-year period of time in adult life. Non-shared environmental influences have a small long-term effect Although associations with the polymorphisms could not be replicated, results should be interpreted with caution due to power considerations. (C) 2002 Lippincott Williams Wilkins.
Resumo:
This study investigated the influence of genes and environment on the variation of apolipoprotein and lipid levels, which are important intermediate phenotypes in the pathways toward cardiovascular disease. Heritability estimates are presented, including those for apolipoprotein E and All levels which have rarely been reported before. We studied twin samples from the Netherlands (two cohorts; n = 160 pairs, aged 13-22 and n = 204 pairs, aged 34-62), Australia (n = 1362 pairs, aged 28-92) and Sweden (n = 302 pairs, aged 42-88). The variation of apolipoprotein and lipid levels depended largely on the influences of additive genetic factors in each twin sample. There was no significant evidence for the influence of common environment. No sex differences in heritability estimates for any phenotype in any of the samples were observed. Heritabilities ranged from 0.48-0.87, with most heritabilities exceeding 0.60. The heritability estimates in the Dutch samples were significantly higher than in the Australian sample. The heritabilities for the Swedish were intermediate to the Dutch and the Australian samples and not significantly different from the heritabilities in these other two samples. Although sample specific effects are present, we have shown that genes play a major role in determining the variance of apolipoprotein and lipid levels in four independent twin samples from three different countries.
Resumo:
There have been few replicated examples of genotype x environment interaction effects on behavioral variation or risk of psychiatric disorder. We review some of the factors that have made detection of genotype x environment interaction effects difficult, and show how genotype x shared environment interaction (GxSE) effects are commonly confounded with genetic parameters in data from twin pairs reared together. Historic data on twin pairs reared apart can in principle be used to estimate such GxSE effects, but have rarely been used for this purpose. We illustrate this using previously published data from the Swedish Adoption Twin Study of Aging (SATSA), which suggest that GxSE effects could account for as much as 25% of the total variance in risk of becoming a regular smoker. Since few separated twin pairs will be available for study in the future, we also consider methods for modifying variance components linkage analysis to allow for environmental interactions with linked loci.
Resumo:
The extent to which the genetic risk for alcohol dependence (AD) and conduct disorder (CD) and their common genetic risk overlap with genetic factors contributing to variation in dimensions of personality was examined in a study of 6,453 individuals from 3,383 adult male and female same-sex and unlike-sex twin pairs from the Australian Twin Registry. The associations between the personality dimensions of positive emotionality, negative emotionality, and AD and CD risk were modest. whereas the associations between behavioral undercontrol and AD and CD risk were substantially higher. Genetic influences contributing to variation in behavioral undercontrol accounted for about 40% of the genetic variation in AD and CD risk and about 90% of the common genetic risk for AD and CD. These results suggest that genetic factors contributing to variation in dimensions of personality, particularly behavioral undercontrol. account for a substantial proportion of the genetic diathesis for AD and most of the common genetic diathesis for AD and CD among both men and women.
Resumo:
The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Mixed confined and unconfined groundwater flow occurs in a bounded initially dry aquifer when the hydraulic head at the side boundary suddenly rises above the elevation of the aquifer's top boundary. The flow problem as modelled by the Boussinesq equation is non-trivial because of the involvement of two moving boundaries. The transformed equation (based on a similarity transformation) can, however, be dealt with more easily. Here, we present an approximate analytical solution for this flow problem. The approximate solution is compared with an 'exact' numerical solution and found to be a very accurate description for describing the mixed confined and unconfined flow in the confined aquifer. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The study examines whether adolescent twins' attachment style mediates the association between their perceptions of differential parental treatment and their reported adjustment. Data from a survey of 174 adolescent twins are used to assess the links between twins' reports of differential parental affection and differential parental control, their attachment style, and their reported personal self-esteem, social self-esteem, and anxiety. Twins' reports of having been disfavored in comparison with their co-twin were associated with attachment insecurity, anxiety, and lower personal self-esteem. Attachment was found to mediate the association between the twins' reports of differential parental affection and their reported anxiety and personal self-esteem. The strongest evidence for mediation was found for twins' reports of differential maternal affection in predicting adolescent twins' anxiety.
Resumo:
The vertebrate Slit gene family currently consists of three members;Slit1,Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico mapping, we determined the genomic structure of all three Slit genes in mouse and man. Analysis of EST and genomic databases revealed no evidence of further Slit family members in either organism. All three Slit genes were encoded by 36 (Slit3) or 37 (Slit1 and Slit2) exons covering at least 143 kb or 183 kb of mouse or human genomic DNA respectively. Two additional potential leucine-rich repeat encoding exons were identified within intron 12 of Slit2. These could be inserted in frame, suggesting that alternate splicing may occur in Slit2 A search for STS sequences within human Slit3 anchored this gene to D5S2075 at the 5' end (exon 4) and SGC32449 within the 3' UTR, suggesting that Slit3 may cover greater than 693 kb. The genomic structure of all Slit genes demonstrated considerable modularity in the placement of exon-intron boundaries such that individual leucine-rich repeat motifs were encoded by individual 72 by exons. This further implies the potential generation of multiple Slit protein isoforms varying in their number of repeat units. cDNA library screening and EST database searching verified that such alternate splicing does occur.
Resumo:
The mononuclear phagocyte system (MPS) was defined as a family of cells comprising bone marrow progenitors, blood monocytes, and tissue macrophages. In this review, we briefly consider markers for cells of this lineage in the mouse, especially the F4/80 surface antigen and the receptor for macrophage colony-stimulating factor. The concept of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, the blurring of the boundaries between macrophages and other cells types arising from phenotypic plasticity and transdifferentiation, and evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. Nevertheless, there is a unity to cells of the MPS suggested by their location, morphology, and shared markers. We discuss the origins of macrophage heterogeneity and argue that macrophages and antigen-representing dendritic cells are closely related and part of the MPS.
Resumo:
The most widely used method for predicting the onset of continuous caving is Laubscher's caving chart. A detailed examination of this method was undertaken which concluded that it had limitations which may impact on results, particularly when dealing with stronger rock masses that are outside current experience. These limitations relate to inadequate guidelines for adjustment factors to rock mass rating (RMR), concerns about the position on the chart of critical case history data, undocumented changes to the method and an inadequate number of data points to be confident of stability boundaries. A review was undertaken on the application and reliability of a numerical method of assessing cavability. The review highlighted a number of issues, which at this stage, make numerical continuum methods problematic for predicting cavability. This is in particular reference to sensitivity to input parameters that are difficult to determine accurately and mesh dependency. An extended version of the Mathews method for open stope design was developed as an alternative method of predicting the onset of continuous caving. A number of caving case histories were collected and analyzed and a caving boundary delineated statistically on the Mathews stability graph. The definition of the caving boundary was aided by the existence of a large and wide-ranging stability database from non-caving mines. A caving rate model was extrapolated from the extended Mathews stability graph but could only be partially validated due to a lack of reliable data.
Resumo:
Co-sintering aid has been added to Ce1.9Gd0.1O1.95 (CGO) by treating a commercial powder with Co(NO3)(2) (COCGO), X-ray diffraction (XRD) measurements of lattice parameter indicated that the Co was located on the CGO particle surface after calcination at 650 degreesC. After heat treatment at temperatures above 650 degreesC, the room temperature lattice parameter of CGO was found to increase, indicating redistribution of the Gd. Compared to CGO, the lattice parameter of CGO + 2 cation% Co (2CoCGO) was lower for a given temperature (650-1100 degreesC), A.C. impedance revealed that the lattice conductivity of 2CoCGO was enhanced when densified at lower temperatures, Transmission electron microscopy (TEM) showed that, even after sintering for 4 h at 980 degreesC, most of the Co was located at grain boundaries. (C) 2002 Published by Elsevier Science B.V.