301 resultados para Relationship theory
Resumo:
Using a species’ population to measure its conservation status, this note explores how an increase in knowledge about this status would change the public’s willingness to donate funds for its conservation. This is done on the basis that the relationship between the level of donations and a species’ conservation status satisfies stated general mathematical properties. This level of donation increases, on average, with greater knowledge of a species’ conservation status if it is endangered, but falls if it is secure. Game theory and other theory is used to show how exaggerating the degree of endangerment of a species can be counterproductive for conservation.
Resumo:
Background: Because of several similar features in the pathobiology of periodontitis and rheumatoid arthritis, in a previous study we proposed a possible relationship between the two diseases. Therefore, the aims of this study were to study a population of rheumatoid arthritis patients and determine the extent of their periodontal disease and correlate this with various indicators of rheumatoid arthritis. Methods: Sixty-five consecutive patients attending a rheumatology clinic were examined for their levels of periodontitis and rheumatoid arthritis. A control group consisted of age- and gender-matched individuals without rheumatoid arthritis. Specific measures for periodontitis included probing depths, attachment loss, bleeding scores, plague scores, and radiographic bone loss scores. Measures of rheumatoid arthritis included tender joint analysis, swollen joint analysis, pain index, physician's global assessment on a visual analogue scale, health assessment questionnaire, levels of C-reactive protein, and erythrocyte sedimentation rate. The relationship between periodontal bone loss and rheumatological findings as well as the relationship between bone loss in the rheumatoid arthritis and control groups were analyzed. Results: No differences were noted for the plaque and bleeding indices between the control and rheumatoid arthritis groups. The rheumatoid arthritis group did, however, have more missing teeth than the control group and a higher percentage of these subjects had deeper pocketing. When the percentage of bone loss was compared with various indicators of rheumatoid arthritis disease activity, it was found that swollen joints, health assessment questionnaire scores, levels of C-reactive protein, and erythrocyte sedimentation rate were the principal parameters which could be associated with periodontal bone loss. Conclusions: The results of this study provide further evidence of a significant association between periodontitis and rheumatoid arthritis. This association may be a reflection of a common underlying disregulation of the inflammatory response in these individuals.
Resumo:
The effect of controlled In3+ substitution on to the B-site in the perovskite oxygen ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) has been examined with a view to exploring the influence on oxygen ion conductivity. In combination with the electrical conductivity study, detailed microstructural analysis was used to verify the location of the substituting cation and to determine the nature of secondary phase formation. The indium species clearly substituted for Ga3+ on the B-site of the lattice and the electrical conductivity showed a gradual decrease as the In+3 content increased. The interpretation of this data was complicated by the formation of the secondary phases LaInO3 and LaSrGaO4. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Uncontrolled systems (x) over dot is an element of Ax, where A is a non-empty compact set of matrices, and controlled systems (x) over dot is an element of Ax + Bu are considered. Higher-order systems 0 is an element of Px - Du, where and are sets of differential polynomials, are also studied. It is shown that, under natural conditions commonly occurring in robust control theory, with some mild additional restrictions, asymptotic stability of differential inclusions is guaranteed. The main results are variants of small-gain theorems and the principal technique used is the Krasnosel'skii-Pokrovskii principle of absence of bounded solutions.
Resumo:
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate? extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required far viable management of such species in the Florida scrub ecosystem. (C) 2001 Academic Press.
Resumo:
Thirty-two pouch-young tammar wallabies were used to discover the generators of the auditory brainstem response (ABR) during development by the use of simultaneous ABR and focal brainstem recordings. A click response from the auditory nerve root (ANR) in the wallaby was recorded from postnatal day (PND) 101, when no central auditory station was functional, and coincided with the ABR, a simple positive wave. The response of the cochlear nucleus (CN) was detected from PND 110, when the ABR had developed 1 positive and 1 negative peak. The dominant component of the focal ANR response, the N-1 wave, coincided with the first half of the ABR P wave, and that of the focal CN response, the N-1 wave, coincided with the later two thirds. In older animals, the ANR response coincided with the ABR's N-1, wave, while the CN response coincided with the ABR's P-2, N-2 and P-3 waves, with its contribution to the ABR P-2 dominant. The protracted development of the marsupial auditory system which facilitated these correlations makes the tammar wallaby a particularly suitable model. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
This study (a) examined the multidimensionality of both group cohesion and group performance, (b) investigated the relationship between group-level task and social cohesion and group effectiveness, and (c) examined the longitudinal changes in cohesion and performance and the direction of effect between cohesion and performance. First, the authors hypothesized that both task and social cohesion would predict positively all dimensions of group performance. Second, that a stronger relationship would be observed between task cohesion and task effectiveness and between social cohesion and system viability. Third, that all dimensions of cohesion and performance would increase over time. Finally, that cohesion would be both the antecedent and the consequence of performance but that the performance-cohesion relationship would be stronger than the cohesion-performance relationship. Results supported the hypothesized one-to-one relationship between specific dimensions of group cohesion and group performance. Task cohesion was the sole predictor of self-rated performance at both Time 1 and Time 2, whereas social cohesion was the only predictor of system viability at Time 1 and the stronger predictor at Time 2. Social cohesion at Time 2 predicted performance on group task. However, no longitudinal changes were found in cohesion or performance. Finally, group cohesion was found to be the antecedent, but not the consequence, of group performance.
Resumo:
A social identity theory of leadership is described that views leadership as a group process generated by social categorization and prototype-based depersonalization processes associated with social identity. Group identification, as self-categorization, constructs an intragroup prototypicality gradient that invests the most prototypical member with the appearance of having influence; the appearance arises because members cognitively and behaviorally conform to the prototype. The appearance of influence becomes a reality through depersonalized social attraction processes that make followers agree and comply with the leader's ideas and suggestions. Consensual social attraction also imbues the leader with apparent status and creates a status-based structural differentiation within the group into leader(s) and followers, which has characteristics of unequal status intergroup relations. In addition, a fundamental attribution process constructs a charismatic leadership personality for the leader, which further empowers the leader and sharpens the leader-follower status differential. Empirical support for the theory is reviewed and a range of implications discussed, including intergroup dimensions, uncertainty reduction and extremism, power, and pitfalls of prototype-based leadership.
Resumo:
Leaf water potential (psi (l)) represents a good indicator of the water status of plants, and continuous monitoring of it can be useful in research and field applications such as scheduling irrigation. Changes in stem diameter (Sd) were used for monitoring psi (l) of pot-grown sorghum [Sorghum bicolor (L.) Moench] plants in a glasshouse. This method requires occasional calibration of S-d values against psi (l). Predicted values of psi (l), based on a single calibration show a good correlation with measured psi (l), values over a period of 13 d before and after the calibration. The correlation can further be improved with shorter time intervals.
Resumo:
Purpose. In the present study we examined the relationship between solvent uptake into a model membrane (silicone) with the physical properties of the solvents (e.g., solubility parameter, melting point, molecular weight) and its potential predictability. We then assessed the subsequent topical penetration and retention kinetics of hydrocortisone from various solvents to define whether modifications to either solute diffusivity or partitioning were dominant in increasing permeability through solvent-modified membranes. Methods. Membrane sorption of solvents was determined from weight differences following immersion in individual solvents, corrected for differences in density. Permeability and retention kinetics of H-3-hydrocortisone, applied as saturated solutions in the various solvents, were determined over 48 h in horizontal Franz-type glass diffusion cells. Results. Solvent sorption into the membrane could be related to differences in solubility parameters, MW and hydrogen bonding (r(2) = 0.76). The actual and predicted volume of solvent sorbed into the membrane was also found to be linearly related to Log hydrocortisone flux, with changes in both diffusivity and partitioning of hydrocortisone observed for the different solvent vehicles. Conclusions. A simple structure-based predictive model can be applied to the sorption of solvents into silicone membranes. Changes in solute diffusivity and partitioning appeared to contribute to the increased hydrocortisone flux observed with the various solvent vehicles. The application of this predictive model to the more complex skin membrane remains to be determined.