226 resultados para NMR CHEMICAL-SHIFTS
Resumo:
The structure of the product from the free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) was investigated. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. Molecular weight (MW) and molecular weight distribution (MWD) are completely altered when the feed composition is dominantly AAc. NMR spectroscopy confirmed the incorporation of AAc into the polymer. However, no allyl-allyl linkages were observed at low conversions. T-g was found to be affected by the incorporation of AAc into the polymer. (C) 2001 Society of Chemical Industry.
Resumo:
The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Purpose: This study was designed to investigate the immediate effect of exercise intensity and duration on body fluid volumes in rats throughout a 3-wk exercise program. Methods: Changes in the extracellular water (ECW) and total body water (TBW) volumes of rats were measured preexercise and postexercise using multiple frequency bioelectrical impedance analysis. Groups of rats were exercised at two intensities (6 m.min(-1) and 12 m.min(-1)) for two exercise times (60 min and 90 min) 5 d.wk(-1) during a 3-wk period. Changes in plasma electrolytes, glucose, and lactate resulting from the exercise were also measured on 3 d of each week. Results: Each group of animals showed significant losses in ECW and TBW as a direct result of daily exercise. The magnitude of fluid loss was directly related to the intensity of the exercise, bur not to exercise duration; although the magnitude of daily fluid loss at the higher intensity exercise (12 m.min(-1)) decreased as the study progressed, possibly indicating a training effect. Conclusion: At low-intensity exercise, there is a small bur significant loss in both TBW and ECW fluids, and the magnitude of these losses does not change throughout a 3-wk exercise program. At moderate levels of exercise intensity, there is a greater loss of both TBW and ECW fluids. However, the magnitudes of these losses decrease significantly during the 3-wk exercise program, thus demonstrating a training effect.
Resumo:
Malondialdehyde and acetaldehyde react together with proteins and form hybrid protein conjugates designated as MAA adducts, which have been detected in livers of ethanol-fed animals. Our previous studies have shown that MAA adducts are comprised of two distinct products. One adduct is composed of two molecules of malondialdehyde and one molecule of acetaldehyde and was identified as the 4-methpl-1,4-dihydropyridine-3,5-dicarbaldehyde derivative of an amino group (MHHDC adduct). The other adduct is a 1:1 adduct of malondialdehyde and acetaldehyde and was identified as the 2-formyl-3-(alkylamino)butanal derivative of an amino group (FAAB adduct). In this study, information on the mechanism of MAA adduct formation was obtained, focusing on whether the FAAB adduct serves as a precursor for the MDHDC adduct. Upon the basis of chemical analysis and NMR spectroscopy, two initial reaction steps appear to be a prerequisite for MDHDC formation. One step involves the reaction of one molecule of malondialdehyde and one of acetaldehyde with an amino group of a protein to form the FAAB product, while the other step involves the generation of a malondialdehyde-enamine. It appears that generation of the MDHDC adduct requires the FAAB moiety to be transferred to the nitrogen of the MDA-enamine. For efficient reaction of FAAB with the enamine to take place, additional experiments indicated that these two intermediates likely must be in positions on the protein of close proximity to each other. Further studies showed that the incubation of liver proteins from ethanol-fed rats with MDA resulted in a marked generation of MDHDC adducts, indicating the presence of a pool of FAAB adducts in the liver of ethanol-fed animals. Overall, these findings show that MDHDC-protein adduct formation occurs via the reaction of the FAAB moiety with a malondialdehyde-enamine, and further suggest that a similar mechanism may be operative in vivo in the liver during prolonged ethanol consumption.
Resumo:
Human S100A12 (extracellular newly identified RAGE (receptor for advanced glycosylation end products)binding protein), a new member of the S100 family of EF-hand calcium-binding proteins, was chemically synthesised using highly optimised 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/tert-butoxycarbonyl in situ neutralisation solid-phase chemistry. Circular dichroism studies indicated that CaCl2 decreased the helical content by 27% whereas helicity was marginally increased by ZnCl2. The propensity of S100A12 to dimerise was examined by electrospray ionisation time-of-flight mass spectrometry which clearly demonstrated the prevalence of the non-covalent homodimer (20 890 Da). Importantly, synthetic human S100A12 in the nanomolar range was chemotactic for neutrophils and macrophages in vitro. (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
An outbreak of acute liver failure occurred at a dialysis center in Caruaru, Brazil (8 degrees 17 'S, 35 degrees 58 'W), 134 km from Recife, the state capital of Pernambuco. At the clinic, 116 (89%) of 131 patients experienced visual disturbances, nausea, and vomiting after routine hemodialysis treatment on 13-20 February 1996. Subsequently, 100 patients developed acute liver failure, and of these 76 died. As of December 1996, 52 of the deaths could be attributed to a common syndrome now called Caruaru syndrome. Examination of phytoplankton from the dialysis clinic's water source, analyses of the clinic's water treatment system, plus serum and liver tissue of clinic patients led to the identification of two groups of cyanobacterial toxins, the hepatotoxic cyclic peptide microcystins and the hepatotoxic alkaloid cylindrospermopsin. Comparison of victims' symptoms and pathology using animal studies of these two cyanotoxins leads us to conclude that the major contributing factor to death of the dialyses patients was intravenous exposure to microcystins, specifically microcystin-YR, -LR, and -AR. From liver concentrations and exposure volumes, it was estimated that 19.5 mug/L microcystin was in the water used for dialysis treatments. This is 19.5 times the level set as a guideline for safe drinking water supplies by the World. Health Organization.
Resumo:
Alpha-Conotoxins are small disulfide rich peptides from the venoms of marine cone snails. They target specific nicotinic acetylcholine receptor (nAChR) subtypes with high affinity and potency and are therefore valuable as neurophamacological probes and potential drug leads. This article gives a general overview of the chemical and biological features of alpha -conotoxins, including their pharmacology, binding interactions and structure. A detailed analysis of recently reported three-dimensional structures from members of different subfamilies of the alpha -conotoxins, including those with 3/5, 4/3, 4/6 and 4.7 spacings of their two intracysteine loops is given. The structures are generally well defined and represent useful frameworks for the display of amino acid residues to target molecules.
Resumo:
The three-dimensional solution structure of BSTI, a trypsin inhibitor from the European frog Bombina bombina, has been solved using H-1 NMR spectroscopy. The 60 amino acid protein contains five disulfide bonds, which were unambiguously determined to be Cvs (4-38), Cys (13-34), Cys (17-30), Cys (21-60), and Cys (40-54) by experimental restraints and subsequent structure calculations. The main elements of secondary structure are four beta -strands, arranged as two small antiparallel beta -sheets, The overall fold of BSTI is disk shaped and is characterized by the lack of a hydrophobic core. The presumed active site is located on a loop comprising residues 21-34, which is a relatively disordered region similar to that seen in many other protease inhibitors. However, the overall fold is different to other known protease inhibitors with the exception of a small family of inhibitors isolated from nematodes of the family Ascaris and recently also from the haemolymph of Apis mellifera. BSTI may thus be classified as a new member of this recently discovered family of protease inhibitors.
Resumo:
Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.
Resumo:
Shiftwork is a major source of stress for many worker's. This study highlights the role that organizational and psychosocial variables play in alleviating the negative health effects of 10 and 14-h shifts. It examines the direct and mediated effects of coping strategies, social support and control of shifts on work/non-work conflict and subjective health. Participants are 60 ambulance workers, aged 22 to SS years. A structural equation model with good fit demonstrates complex effects of social support from various sources (supervisors, co-workers and family), coping and control on work/non-work conflict and subjective health., Conceptually, the research contributes to the development of a theoretical framework that can assist in explaining how key psychosocial and organizational variables influence the psychological and physical symptoms experienced by shiftworkers. Copyright (C) 2002 John Wiley Sons, Ltd.