180 resultados para Link variable method
Resumo:
Frequency deviation is a common problem for power system signal processing. Many power system measurements are carried out in a fixed sampling rate assuming the system operates in its nominal frequency (50 or 60 Hz). However, the actual frequency may deviate from the normal value from time to time due to various reasons such as disturbances and subsequent system transients. Measurement of signals based on a fixed sampling rate may introduce errors under such situations. In order to achieve high precision signal measurement appropriate algorithms need to be employed to reduce the impact from frequency deviation in the power system data acquisition process. This paper proposes an advanced algorithm to enhance Fourier transform for power system signal processing. The algorithm is able to effectively correct frequency deviation under fixed sampling rate. Accurate measurement of power system signals is essential for the secure and reliable operation of power systems. The algorithm is readily applicable to such occasions where signal processing is affected by frequency deviation. Both mathematical proof and numerical simulation are given in this paper to illustrate robustness and effectiveness of the proposed algorithm. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.
Resumo:
This paper continues the development of a new approach for the design of shim and gradient coils, used in magnetic resonance imaging (MRI) applications. A cylindrical primary coil of radius a and length 2L is placed inside a co-axial shield cylinder of radius b. An active shielding strategy is used to create a desired target field at an arbitrarily specified (cylindrical) location within the primary coil, and to annul the field at a certain radius outside the shield. The form of the interior target field may be chosen arbitrarily by the designer, although zonal and tesseral harmonics are typically used in MRI applications. The method presented here designs coil windings on both the primary and shielding cylinders, to produce fields that conform to the specified interior target field and the annulled field exterior to the shield. An additional feature of the method presented here is that the target field inside the primary coil is matched at two different radii, to improve overall accuracy. The method is illustrated by designing several shielded shim coils, for creating higher order tesseral fields located asymmetrically within the coil. The simpler case of pure zonal fields is discussed separately and applied to the design of some higher order shielded coils.
Resumo:
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.
Resumo:
This study aimed to develop a practical method of estimating energy expenditure (EE) during tennis. Twenty-four elite female tennis players first completed a tennis-specific graded test in which five different intensity levels were applied randomly. Each intensity level was intended to simulate a game of singles tennis and comprised six 14 s periods of activity alternated with 20 s of active rest. Oxygen consumption (VO2) and heart rate (HR) were measured continuously and each player's rate of perceived exertion (RPE) was recorded at the end of each intensity level. Rate of energy expenditure (EEVO2) during the test was calculated using the sum of VO2 during play and the 'O-2 debt' during recovery, divided by the duration of the activity. There were significant individual linear relationships between EEVO2 and RPE, EEVO2 and HR, (rgreater than or equal to0.89 rgreater than or equal to0.93; p
Stability and simulation-based design of steel scaffolding without using the effective length method
Resumo:
This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimen- sioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation that improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.
Resumo:
The entire internal transcribed spacer ( ITS) region, including the 5.8S subunit of the nuclear ribosomal DNA ( rDNA), was sequenced by direct double-stranded sequencing of polymerase chain reaction (PCR) amplified fragments. The study included 40 Sporobolus ( Family Poaceae, subfamily Chloridoideae) seed collections from 14 putative species ( all 11 species from the S. indicus complex and three Australian native species). These sequences, along with those from two out-group species [ Pennisetum alopecuroides ( L.) Spreng. and Heteropogon contortus ( L.) P. Beauv. ex Roemer & Schultes, Poaceae, subfamily Panicoideae], were analysed by the parsimony method (PAUP; version 4.0b4a) to infer phylogenetic relationships among these species. The length of the ITS1, 5.8S subunit and ITS2 region were 222, 164 and 218 base pairs ( bp), respectively, in all species of the S. indicus complex, except for the ITS2 region of S. diandrus P. Beauv. individuals, which was 217 bp long. Of the 624 characters included in the analysis, 245 ( 39.3%) of the 330 variable sites contained potential phylogenetic information. Differences in sequences among the members of the S. pyramidalis P. Beauv., S. natalensis (Steud.) Dur & Schinz and S. jacquemontii Kunth. collections were 0%, while differences ranged from 0 to 2% between these and other species of the complex. Similarly, differences in sequences among collections of S. laxus B. K. Simon, S. sessilis B. K. Simon, S. elongatus R. Br. and S. creber De Nardi were 0%, compared with differences of 1-2% between these four species and the rest of the complex. When comparing S. fertilis ( Steud.) Clayton and S. africanus (Poir.) Robyns & Tourney, differences between collections ranged from 0 to 1%. Parsimony analysis grouped all 11 species of the S. indicus complex together, indicating a monophyletic origin. For the entire data set, pair-wise distances among members of the S. indicus complex varied from 0.00 to 1.58%, compared with a range of 20.08-21.44% among species in the complex and the Australian native species studied. A strict consensus phylogenetic tree separated 11 species of the S. indicus complex into five major clades. The phylogeny, based on ITS sequences, was found to be congruent with an earlier study on the taxonomic relationship of the weedy Sporobolus grasses revealed from random amplified polymorphic DNA ( RAPD). However, this cladistic analysis of the complex was not in agreement with that created on past morphological analyses and therefore gives a new insight into the phylogeny of the S. indicus complex.
Resumo:
Conventional methods to determine surface diffusion of adsorbed molecules are proven to be inadequate for strongly adsorbing vapors on activated carbon. Knudsen diffusion permeability (B-k) for strongly adsorbing vapors cannot be directly estimated from that of inert gases such as helium. In this paper three models are considered to elucidate the mechanism of surface diffusion in activated carbon. The transport mechanism in all three models is a combination of Knudsen diffusion, viscous flow and surface diffusion. The collision reflection factor f (which is the fraction of molecules undergoing collision to the solid surface over reflection from the surface) of the Knudsen diffusivity is assumed to be a function of loading. It was found to be 1.79 in the limit of zero loading, and decreases as loading increases. The surface diffusion permeability increases sharply at very low pressures and then starts to decrease after it has reached a maximum (B(mum)s) at a threshold pressure. The initial rapid increase in the total permeability is mainly attributed to surface diffusion. Interestingly the B(mum)s for all adsorbates appear at the same volumetric adsorbed phase concentration, suggesting that the volume of adsorbed molecules may play an important role in the surface diffusion mechanism in activated carbon. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We investigate nonclassical Stokes-operator variances in continuous-wave polarization-squeezed laser light generated from one and two optical parametric amplifiers. A general expression of how Stokes-operator variances decompose into two-mode quadrature operator variances is given. Stokes parameter variance spectra for four different polarization-squeezed states have been measured and compared with a coherent state. Our measurement results are visualized by three-dimensional Stokes-operator noise volumes mapped on the quantum Poincare sphere. We quantitatively compare the channel capacity of the different continuous-variable polarization states for communication protocols. It is shown that squeezed polarization states provide 33% higher channel capacities than the optimum coherent beam protocol.
Resumo:
We generate a pair of entangled beams from the interference of two amplitude squeezed beams. The entanglement is quantified in terms of EPR paradox and inseparability criteria, with both results clearly beating the standard quantum limit. We experimentally analyze the effect of decoherence on each criterion and demonstrate qualitative differences. We also characterize the number of required and excess photons present in the entangled beams and provide contour plots of the efficacy of quantum information protocols in terms of these variables.
Resumo:
We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity F and with signal transfer T-q=T++T- and noise correlation V-q=Vinparallel to out+Vinparallel to out-. We observed an optimum fidelity of 0.64+/-0.02, T-q=1.06+/-0.02, and V-q=0.96+/-0.10. We discuss the significance of both T-q>1 and V-q
Resumo:
We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein–Podolsky–Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincaré sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound √3 times more stringent than for the quadrature entanglement.
Resumo:
A new wavelet-based adaptive framework for solving population balance equations (PBEs) is proposed in this work. The technique is general, powerful and efficient without the need for prior assumptions about the characteristics of the processes. Because there are steeply varying number densities across a size range, a new strategy is developed to select the optimal order of resolution and the collocation points based on an interpolating wavelet transform (IWT). The proposed technique has been tested for size-independent agglomeration, agglomeration with a linear summation kernel and agglomeration with a nonlinear kernel. In all cases, the predicted and analytical particle size distributions (PSDs) are in excellent agreement. Further work on the solution of the general population balance equations with nucleation, growth and agglomeration and the solution of steady-state population balance equations will be presented in this framework. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We develop a method for determining the elements of the pressure tensor at a radius r in a cylindrically symmetric system, analogous to the so-called method of planes used in planar systems [B. D. Todd, Denis J. Evans, and Peter J. Daivis, Phys. Rev. E 52, 1627 (1995)]. We demonstrate its application in determining the radial shear stress dependence during molecular dynamics simulations of the forced flow of methane in cylindrical silica mesopores. Such expressions are useful for the examination of constitutive relations in the context of transport in confined systems.
Resumo:
Pili of pathogenic Neisseria are major virulence factors associated with adhesion, cytotoxicity, twitching motility, autoaggregation, and DNA transformation. Pili are modified posttranslationally by the addition of phosphorylcholine. However, no genes involved in either the biosynthesis or the transfer of phosphorylcholine in Neisseria meningitidis have been identified. In this study, we identified five candidate open reading frames (ORFs) potentially involved in the biosynthesis or transfer of phosphorylcholine to pilin in N. meningitidis. Insertional mutants were constructed for each ORF in N. meningitidis strain C311#3 to determine their effect on phosphorylcholine expression. The effect of the mutant ORFs on the modification by phosphorylcholine was analyzed by Western analysis with phosphorylcholine-specific monoclonal antibody TEPC-15. Analysis of the mutants showed that ORF NMB0415, now defined as pptA (pilin phosphorylcholine transferase A), is involved in the addition of phosphorylcholine to pilin in N. meningitidis. Additionally, the phase variation (high frequency on-off switching of expression) of phosphorylcholine on pilin is due to changes in a homopolymeric guanosine tract in pptA.