410 resultados para Human Cytosolic Sulfotransferases
Resumo:
A line of FVB (H-2(q)) mice transgenic for the E6/E7 open reading frames of Human Papillomavirus type 16 driven from the alpha-A crystallin promoter expresses E7 mRNA in lens and skin epithelium. E7 protein is detectable in adult skin, coinciding with the development or inflammatory skin disease, which progresses to papillomata and squamous carcinomata in some mice. By examining the outcome of parenteral immunization with E7 protein, we sought to determine whether endogenous expression of E7 in skin had induced a preexisting immune outcome, i.e., specific immunity or tolerance, or whether the mice remain naive (''ignorant'') to E7. Our data show that the antibody response to defined E7 B-epitopes, the proliferative response to Th epitopes, and the delayed-type hypersensitivity (DTH) response to whole E7 did not differ between groups or young and old E6/E7 transgenic mice (likely having different degrees of lifetime exposure to E7 protein) or between E6/E7-transgenic and nontransgenic parental strain control mice. Although an E7-specific CTL response could not be induced in the H-2(q) background of these mice, incorporation of a D-b allele into the genome allowed comparison of D-b-restricted CTL responses in E6/E7 transgenic and nontransgenic mice. Experiments indicated that the E7-immunization-induced CTL response did not differ significantly between E6/E7 transgenic and nontransgenic mice. We interpret these results to indicate that in spite of expression of E7 protein in adult skin, E6/E7 transgenic mice remain immunologically naive (ignorant) of E7 epitopes presented by immunization. (C) 1997 Academic Press.
Resumo:
The aim of this study was to prospectively investigate the peak levels and kinetics of donor leucocyte chimerism in human recipients following liver transplantation, The peak levels of chimerism mere observed within the first 48 hours following transplantation and ranged from 0.15% to 20% of total peripheral blood mononuclear cells, In all but one patient, who developed graft versus host disease, there was an early peak level of chimerism that declined over time such that donor leukocytes mere only intermittently detectable after 3 to 4 weeks. In 8 patients who had no episodes of graft rejection, the peak level of donor leukocyte chimerism ranged from 1.3% to 20% (mean +/- SEM; 5.5% +/- 2.1%). In 3 patients who were treated for episodes of acute graft rejection during the first four postoperative weeks, the peak level of donor leukocyte chimerism ranged from 0.15% to 0.2% (0.18 +/- 0.02, P = .012), The results demonstrate a marked variation in the total number of donor leukocytes detectable in the peripheral blood early after liver transplantation and also, that lower levels of chimerism may be associated with lower rates of initial graft acceptance and a higher incidence of acute rejection.
Resumo:
In human heart there is now evidence for the involvement of four beta-adrenoceptor populations, three identical to the recombinant beta(1)-, beta(2)- and beta(3)-adrenoceptors, and a fourth as yet uncloned putative beta-adrenoceptor population, which we designate provisionally as the cardiac putative beta(4)-adrenoceptor. This review described novel features of beta-adrenoceptors as modulators of cardiac systolic and diastolic function. We also discuss evidence for modulation by unoccupied beta(1)- and beta(2)-adrenoceptors. Human cardiac and recombinant beta(1)- and beta(2)-adrenoceptors are both mainly coupled to adenylyl cyclase through Gs protein, the latter more tightly than the former. Activation of both human beta(1)- and beta(2)-adrenoceptors not only increases cardiac force during systole but also hastens relaxation through cyclic AMP-dependent phosphorylation of phospholamban and troponin I, thereby facilitating diastolic function. Furthermore, both beta(1) and beta(2)-adrenoceptors can mediate experimental arrhythmias in human cardiac preparations elicited by noradrenaline and adrenaline. Human ventricular beta(3)-adrenoceptors appear to be coupled to a pertussis toxin-sensitive protein (Gi?). beta(3)-Adrenoceptor-selective agonists shorten the action potential and cause cardiodepression, suggesting direct coupling of a Gi protein to a K+ channel. In a variety of species, including man, cardiac putative beta(4)-adrenoceptors mediate cardiostimulant effects of non-conventional partial agonists, i.e. high affinity beta(1)- and beta(2)-adrenoceptor blockers that cause agonist effects at concentrations considerably higher than those that block these receptors. Putative beta(4)-adrenoceptors appear to be coupled positively to a cyclic AMP-dependent cascade and can undergo some desensitisation.
Resumo:
In both animal models and humans, the first and obligatory step in the activation of arylamines is N-hydroxylation. This pathway is primarily mediated by the phase-I enzymes CYP1A1, CYP1A2 and CYP4B1. In the presence of flavonoids such as alpha-naphthoflavone and flavone, both CYP3A4 and CYP3A5 have also been shown to play a minor role in the activation of food-derived heterocyclic amines. The further activation of N-hydroxyarylamines by phase-II metabolism can involve both N,O-acetylation and N,O-sulfonation catalyzed by N-acetyltransferases (NAT1 and NAT2) and sulfotransferases, respectively. Using an array of techniques, we have been unable to detect constitutive CYP1A expression in any segments of the human gastrointestinal tract. This is in contrast to the rabbit where CYP1A1 protein was readily detectable on immunoblots in microsomes prepared from the small intestine. In humans, CYP3A3/3A4 expression was detectable in the esophagus and all segments of the small intestine. Northern blot analysis of eleven human colons showed considerable heterogeneity in CYP3A mRNA between individuals, with the presence of two mRNA species in same subjects. Employing the technique of hybridization histochemistry (also known as in situ hybridization), CYP4B1 expression was observed in some human colons but not in the liver or the small intestine. Hybridization histochemistry studies have also demonstrated variable NAT1 and NAT2 expression in the human gastrointestinal tract. NAT1 and NAT2 mRNA expression was detected in the human liver, small intestine, colon, esophagus, bladder, ureter, stomach and lung. Using a general aryl sulfotransferase riboprobe (HAST1), we have demonstrated marked sulfotransferase expression in the human colon, small intestine, lung, stomach and liver. These studies demonstrate that considerable variability exists in the expression of enzymes involved in the activation of aromatic amines in human tissues. The significance of these results in relation to a role for heterocyclic amines in colon cancer is discussed.
Resumo:
An isolated rat hindlimb perfusion model carrying xenografts of the human melanoma cell line MM96 was used to study the effects of perfusion conditions on melphalan distribution. Krebs-Henseleit buffer and Hartmann's solution containing 4.7% bovine serum albumin (BSA) or 2.8% dextran 40 were used as perfusates. Melphalan concentrations in perfusate, tumour nodules and normal tissues were measured using high-performance liquid chromatography (HPLC). Increasing the perfusion flow rates (from 4 to 8 mi min(-1)) resulted in higher tissue blood flow (determined with Cr-51-labelled microspheres) and melphalan uptake by tumour and normal tissues. me distribution of melphalan within tumour nodules and normal tissues was similar for both Krebs-Henseleit buffer and Hartmann's solution; however, tissue concentrations of melphalan were significantly higher for a perfusate containing 2.8% dextran 40 than for one containing 4.7% BSA. The melphalan concentration in the tumour was one-third of that found in the skin if the perfusate contained 4.7% BSA. In conclusion, this study has shown that a high perfusion flow enhances the delivery of melphalan into implanted tumour nodules and normal tissues, and a perfusate with low melphalan binding (no albumin) is preferred for maximum uptake of drug by the tumour.
Resumo:
In a previous study, we found that the cytokine (human) leukemia inhibitory factor (hLIF) significantly reduced plasma cholesterol levels and the accumulation of lipid in aortic tissues of cholesterol-fed rabbits after 4 weeks of treatment. The mechanisms by which this occurs were investigated in the present study. This involved examining the effect of hLIF on (1) the level of plasma cholesterol at different times throughout the 4-week treatment and diet period; (2) smooth muscle cell (SMC) and macrophage-derived foam cell formation in vitro; and (3) LDL receptor expression and uptake in the human hepatoma cell line HepG2. At time zero, an osmotic minipump (2-mL capacity; infusion rate, 2.5 mu L/h; 28 days) containing either hLIF (30 mu g.kg(-1).d(-1)) or saline was inserted into the peritoneal cavity of New Zealand White rabbits (N=24). Rabbits were divided into four groups of six animals each. Group 1 received a normal diet/saline; group 2, a normal diet/hLIF; group 3, a 1% cholesterol diet/saline; and group 4, a 1% cholesterol diet/hLIF. hLIF had no effect on the plasma lipids or artery wall of group 2 rabbits (normal diet). However, in group 4 rabbits, plasma cholesterol levels and the percent surface area of thoracic aorta covered by fatty streaks was decreased by approximate to 30% and 80%, respectively, throughout all stages of the 4-week treatment period. In vitro, hLIF failed to prevent lipoprotein uptake by either SMCs or macrophages (foam cell formation) when the cells were exposed to P-VLDL for 24 hours. In contrast, hLIF (100 ng/mL) added to cultured human hepatoma HepG2 cells induced a twofold or threefold increase in intracellular lipid accumulation in the medium containing 10% lipoprotein-deficient serum or 10% fetal calf serum, respectively. This was accompanied by a significant non-dose-dependent increase in LDL receptor expression in hLIF-treated HepG2 cells incubated with LDL (20 mu g/mL) when compared with controls (P
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
Propylthiouracil (PTU) is widely believed to cross the placenta less freely than methimazole (MMI) and is therefore regarded as the preferred drug for treatment of hyperthyroidism in pregnancy. Clinical studies comparing the two drugs show, however, no differences in maternal or fetal thyroid function. We investigated transfer from the maternal to the fetal circuit in the isolated perfused term human placental lobule of low and high doses of PTU (4 mu g/mL and 40 mu g/mL) and MMI(1.5 mu g/mL and 15 mu g/mL) in protein-free perfusate and low doses of both drugs with addition of 40 g/L of bovine albumin. Both drugs readily crossed the placenta, reaching equilibrium in all experiments in about 2 h. Drug concentrations in the two circuits fitted a two compartmental model. Transfer kinetics for the two drugs were similar, nonsaturable, and unaffected by addition of albumin. Clearances (mL.min(-1).g(-1), means +/- SD) of PTU from maternal to fetal circuits were: 0.229 +/- 0.110, 0.216 +/- 0.065, and 0.170 +/- 0.032; and for transfer of MMI: 0.165 +/- 0.025, 0.232 +/- 0.153, and 0.174 +/- 0.009 (for low doses without, low doses with, and high doses without albumin, respectively). Clearances of PTU from fetal to maternal circuits were: 0.147 +/- 0.072, 0.109 +/- 0.014, and 0.116 +/- 0.028; and for transfer of MMI: 0.095 +/- 0.029, 0.122 +/- 0.088, and 0.12 +/- 0.005 (in the same experiments). There was no significant difference between drugs or drug doses and no effect of addition of albumin. We conclude that PTU and MMI have similar placental transfer kinetics.
Resumo:
Levels of recombinant human follicle stimulating hormone (r-hFSH) mRNA expressed under butyrate and zinc treatment were compared in two CHO-K1 derived cell lines. In King cells under the metallothionein promoter, butyrate induced the increase in both r-hFSH productivity (q(FSH)) and mRNA levels proportionally. In the presence of 1 mM butyrate and 40 mu M zinc, a 4-fold increase in q(FSH) and mRNA levels was achieved as compared to zinc (40) alone; this wasa approximately 6 times higher than in serum free medium. In Darren cells under the beta-actin promotor butyrate induced an increase in q(SFH) but not in mRNA levels.
Resumo:
The cytochrome P450-dependent covalent binding of radiolabel derived fi om phenytoin (DPH) and its phenol and catechol metabolites, 5-(4'-hydroxyphenyl)-5-phenylhydantoin (HPPH) and 5-(3',4'-dihydroxyphenyl)-5-phenylhydantoin (CAT), was examined in liver microsomes. Radiolabeled HPPH and CAT and unlabeled CAT were obtained from microsomal incubations and isolated by preparative HPLC. NADPH-dependent covalent binding was demonstrated in incubations of human liver microsomes with HPPH. When CAT was used as substrate, covalent adduct formation was independent of NADPH, was enhanced in the presence of systems generating reactive oxygen species, and was diminished under anaerobic conditions or in the presence of cytoprotective reducing agents. Fluorographic analysis showed that radiolabel derived from DPH and HPPH was selectively associated with proteins migrating with approximate relative molecular weights of 57-59 kDa and at the dye front (molecular weights < 23 kDa) on denaturing gels. Lower levels of radiolabel were distributed throughout the molecular weight range. In contrast, little selectivity was seen in covalent adducts formed from CAT. HPPH was shown to be a mechanism-based inactivator of P450, supporting the contention that a cytochrome P450 is one target of covalent binding. These results suggest that covalent binding of radiolabel derived from DPH in rat and human Liver microsomes occurs via initial P450-dependent catechol formation followed by spontaneous oxidation to quinone and semiquinone derivatives that ultimately react with microsomal protein. Targets for covalent binding may include P450s, though the catechol appears to be sufficiently stable to migrate out of the P450 active site to form adducts with other proteins. In conclusion, we have demonstrated that DPH can be bioactivated in human liver to metabolites capable of covalently binding to proteins. The relationship of adduct formation to DPH-induced hypersensitivity reactions remains to be clarified.
Resumo:
The aims of this study were to characterize the recently cloned rat norepinephrine transporter (NET) in more detail and in particular to study possible species differences in its pharmacological properties compared with the human and bovine NETs. The study was carried out by measuring the uptake of [3H]norepinephrine in COS-7 cells expressing the NET after transient transfection with rat, human, or bovine NET cDNA. There were small but significant differences between the rat NET and the human or bovine NETs with respect to the affinities of sodium ions (greater for rat than for bovine) of the substrates norepinephrine, epinephrine, and 1-methyl-4-phenylpyridinium (greater for human than for rat), and of the inhibitor cocaine (greater for human and bovine than for rat), whereas the affinities of dopamine and of most inhibitors, including tricyclic antidepressants, showed no species differences. The fact that the affinities for some substrates, cocaine and sodium ions exhibited small but significant interspecies differences among the rat, human, and bovine NETs suggests that ligand recognition, the translocation process, and sodium ion dependence are influenced differentially by just a few amino acid exchanges in the primary sequences of the transporters. On the other hand, the lack of any major differences in the pharmacological properties of the rat, human, and bovine NETs in this study suggests that data obtained in previous studies on rat tissues and bovine cells can be extrapolated, in all except the most quantitative analyses, to the properties of the human NET.
Resumo:
This study describes a simple method for long-term establishment of human ovarian tumor lines and prediction of T-cell epitopes that could be potentially useful in the generation of tumor-specific cytotoxic T lymphocytes (CTLs), Nine ovarian tumor lines (INT.Ov) were generated from solid primary or metastatic tumors as well as from ascitic fluid, Notably all lines expressed HLA class I, intercellular adhesion molecule-1 (ICAM-1), polymorphic epithelial mucin (PEM) and cytokeratin (CK), but not HLA class II, B7.1 (CD80) or BAGE, While of the 9 lines tested 4 (INT.Ov1, 2, 5 and 6) expressed the folate receptor (FR-alpha) and 6 (INT.Ov1, 2, 5, 6, 7 and 9) expressed the epidermal growth factor receptor (EGFR); MAGE-1 and p185(HER-2/neu) were only found in 2 lines (INT.Ov1 and 2) and GAGE-1 expression in 1 line (INT.Ov2). The identification of class I MHC ligands and T-cell epitopes within protein antigens was achieved by applying several theoretical methods including: 1) similarity or homology searches to MHCPEP; 2) BIMAS and 3) artificial neural network-based predictions of proteins MACE, GAGE, EGFR, p185(HER-2/neu) and FR-alpha expressed in INT.Ov lines, Because of the high frequency of expression of some of these proteins in ovarian cancer and the ability to determine HLA binding peptides efficiently, it is expected that after appropriate screening, a large cohort of ovarian cancer patients may become candidates to receive peptide based vaccines. (C) 1997 Wiley-Liss, Inc.
Resumo:
We describe a method for multiple indicator dilution studies in the isolated perfused human placental lobule developed to investigate the relationships between changes in pressure and flow and solute clearance. A peripheral lobule of a human placenta is perfused with a tissue culture-based medium and the perfusate oxygen tension, arterial and venous pressures, pH and perfusion temperature continuously monitored by a computerized system. Flow rates are readily changed. Bolus injections of vascular, extracellular and water space markers, and study compounds can be made into either maternal or fetal circulations, and precisely timed outflow fractions can be collected with computer-controlled fraction collectors, allowing simultaneous determination of concentration-time profiles of each marker. (C) 1997 Elsevier Science Inc.