170 resultados para General Chemistry
Resumo:
Examination of the chemistry of a number of Australian insect species provided examples of unusual structures and encouraged determinations of their absolute stereochemistry by stereocontrolled syntheses and chromatographic comparisons. Inter alia, studies with the fruit-spotting bug (Amblypelta nitida), certain parasitic wasps (Biosteres sp.), the aposematic shield bug (Cantao parentum), and various species of scarab grubs are summarized. The determination of enantiomeric excesses (ee's) for component epoxides, lactones, spiroacetals, and allenes are described. Stereochemical and related aspects of the biosynthesis of spiroacetals in certain fruit-fly species (Bactrocerae sp.) are also presented.
Resumo:
The genetic basis of cardiovascular disease (CVD) with its complex etiology is still largely elusive. Plasma levels of lipids and apolipoproteins are among the major quantitative risk factors for CVD and are well-established intermediate traits that may be more accessible to genetic dissection than clinical CVD end points. Chromosome 19 harbors multiple genes that have been suggested to play a role in lipid metabolism and previous studies indicated the presence of a quantitative trait locus (QTL) for cholesterol levels in genetic isolates. To establish the relevance of genetic variation at chromosome 19 for plasma levels of lipids and apolipoproteins in the general, out-bred Caucasian population, we performed a linkage study in four independent samples, including adolescent Dutch twins and adult Dutch, Swedish and Australian twins totaling 493 dizygotic twin pairs. The average spacing of short-tandem-repeat markers was 6 - 8 cM. In the three adult twin samples, we found consistent evidence for linkage of chromosome 19 with LDL cholesterol levels ( maximum LOD scores of 4.5, 1.7 and 2.1 in the Dutch, Swedish and Australian sample, respectively); no indication for linkage was observed in the adolescent Dutch twin sample. The QTL effects in the three adult samples were not significantly different and a simultaneous analysis of the samples increased the maximum LOD score to 5.7 at 60 cM pter. Bivariate analyses indicated that the putative LDL-C QTL also contributed to the variance in ApoB levels, consistent with the high genetic correlation between these phenotypes. Our study provides strong evidence for the presence of a QTL on chromosome 19 with a major effect on LDL-C plasma levels in outbred Caucasian populations.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
The ESR spectra of poly(chlorotrifluoroethylene) were recorded following gamma-radiolysis under vacuum at room temperature and 77 K. The very broad spectrum at 77 K revealed little fine structure with which to identity the radicals formed upon irradiation, but subsequent photobleaching and annealing studies, together with radiolytic studies at higher temperatures, afforded scope for making radical assignments. Both main-chain radicals and a range of chain-end radicals have been identified. The G-values for radical formation were 1.55, 0.36 and 0.32 at 77 K, 273 K and room temperature, respectively. (C) 2003 Elsevier Science Ltd. All rights reserved.